Skip to main content Accessibility help
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.608 Render date: 2022-08-12T03:08:31.941Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The regulation of sleep and arousal: Development and psychopathology

Published online by Cambridge University Press:  04 March 2009

Ronald E. Dahl*
Western Psychiatric Institute & Clinic, University of Pittsburgh School of Medicine, Department of Psychiatry
Ronald E. Dahl, Western Psychiatric Institute & Clinic, University of Pittsburgh School of Medicine, Department of Psychiatry, 3811 O'Hara St., Room E733, Pittsburgh, PA 15213.


Throughout early development, a child spends more time asleep than in any waking activity. Yet, the specific role of sleep in brain maturation is a complete mystery. In this article, the developmental psychobiology of sleep regulation is conceptualized within the context of close links to the control of arousal, affect, and attention. The interactions among these systems are considered from an ontogenetic and evolutionary biological perspective. A model is proposed for the development of sleep and arousal regulation with the following major tenets:

1. Sleep and vigilance represent opponent processes in a larger system of arousal regulation.

2. The regulation of sleep, arousal, affect, and attention overlap in physiological, neuroanatomical, clinical, and developmental domains.

3. Complex interactions among these regulatory systems are modulated and integrated in regions of the prefrontal cortex (PFC).

4. Changes at the level of PFC underlie maturational shifts in the relative balance across these regulatory systems (such as decreases in the depth/length of sleep and increased capacity for vigilance and attention), which occur with normal development.

5. The effects of sleep deprivation (including alterations in attention, emotions, and goal-directed behaviors) also involve changes at the level of PFC integration across regulatory systems.

This model is then discussed in the context of developmental pathology in the control of affect and attention, with an emphasis on sleep changes in depression.

Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Anders, T. F., Sadeh, A., & Appareddy, V. (1995). Normal sleep in neonates and children. In Ferber, R. & Kryger, M. (Eds.), Principles and practice of sleep medicine in the child (pp. 718). Philadelphia: Saunders.Google Scholar
Anders, T., & Roffwarg, H. (1973). The effects of selective interruption and total sleep deprivation in the human newborn. Developmental Psychobiology. 6, 79.CrossRefGoogle Scholar
Appleboom-Fondu, J., Kerkhofs, M., & Mendlewicz, J. (1988). Depression in adolescents and young adults—Polysomnography and neuroendocrine aspects. Journal of Affective Disorders, 14, 3540.Google Scholar
Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey arc selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 14, 44674480.CrossRefGoogle Scholar
Banderet, L. E., Stokes, J. W., Francesconi, R., Kowal, D. M., & Naitoh, P. (1981). Artillery teams in simulated sustained.combat: Performance and other measures. In Johnson, L. C., Tepas, D. I., Colquhoun, W. P., & Colligan, M. J. (Eds.), Biological rhythms sleep and shift work (pp. 459479). New York: Medical & Scientific Books.Google Scholar
Baxter, L. R., Phelps, M. E., Maziotta, J. C., Schwartz, J. D., Gerner, R. H., Selin, G. E., & Sumida, R. M. (1985). Cerebral metabolic rates for glucose in mood disorders. Archives of General Psychiatry, 42, 441447.CrossRefGoogle ScholarPubMed
Baxter, L. R., Schwartz, J. M., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Selin, C. E., Gerner, R. H., & Sumida, R. M. (1989). Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives of General Psychiatry. 46, 243250.CrossRefGoogle Scholar
Benca, R. M., & Casper, R. C. (1994). Sleep in eating disorders. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (pp. 927933). Philadelphia: Saunders.Google Scholar
Benca, R. M., Obermeyer, W. H., Thisted, R. A., & Gillin, J. C. (1992). Sleep and psychiatric disorders: A meta-analysis. Archives of General Psychiatry, 49, 651668.CrossRefGoogle ScholarPubMed
Blackgrove, M., Alexander, C., & Horne, J. (1991). The effects of sleep deprivation on a test of field-independence. Sleep Research, 20A, 458.Google Scholar
Blampied, N. M., & France, K. G. (1993). A behavioral model of infant sleep disturbance. Journal of Applied Behavior Analysis, 26, 477492.CrossRefGoogle ScholarPubMed
Bliss, E. L., Clark, L. D., & West, C. D. (1959). Studies of sleep deprivation—Relationship to schizophrenia. Archives of Neurology. 81, 348359.CrossRefGoogle Scholar
Bonnet, M. H. (1994). Sleep deprivation. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 5067). Philadelphia: Saunders.Google Scholar
Borbely, A. A., & Wirz-Justice, A. (1982). Sleep sleep deprivation and depression: A hypothesis derived from a model of sleep regulation. Human Neurobiology. 1, 205210.Google ScholarPubMed
Brain, C. K. (1981). The hunters or the hunted. Chicago: University of Chicago Press.Google Scholar
Busby, K., & Pivik, R. T. (1983). Failure of high intensity auditory stimuli to affect behavioral arousal in children during the First sleep cycle. Pediatric Research, 17, 802805.CrossRefGoogle ScholarPubMed
Carskadon, M. A. (1990). Adolescent sleepiness: increased risk in a high-risk population. Alcohol, Drugs and Driving, 6, 317328.Google Scholar
Carskadon, M. A., Harvey, K., Duke, P., Andres, T. F., Litt, I. F., & Dement, W. C. (1980). Pubertal changes in daytime sleepiness. Sleep, 2, 453–60.Google ScholarPubMed
Carskadon, M. A., & Mancuso, J. (1987). Reported sleep habits in boarding school students: Preliminary data. Sleep Research, 14, 293.Google Scholar
Carskadon, M. A., & Mancuso, J. (1988). Daytime sleepiness in high school adolescents: Influence of curfew. Sleep Research, 17, 75.Google Scholar
Carskadon, M. A., Rosekind, M. R., Galli, J., Sohn, J., Herman, K. B., & Davis, S. S. (1989). Adolescent sleepiness during sleep restriction in the natural environment. Sleep Research, 18, 115.Google Scholar
Cartwright, R. D., & Wood, E. (1991). Adjustment disorders of sleep: The sleep effects of a major stressful event and its resolution. Psychiatry Research, 39, 199209.CrossRefGoogle Scholar
Chase, M. A. (1994). Sleep mechanisms. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (pp. 105175). Philadelphia: Saunders.Google Scholar
Chase, M. H., & Morales, F. R. (1990). The atonia and myoclonia of active (REM) sleep. Annual Review of Psychology, 41, 557584.CrossRefGoogle ScholarPubMed
Chugani, H. T., Phelps, M. E., & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487497.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Beeghly, M. (1990). The self in transition: Infancy and childhood. Chicago: University of Chicago Press.Google Scholar
Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology. 50, 873880CrossRefGoogle ScholarPubMed
Curtis, A. L., & Valentino, R. J. (1994). Coretiotiapin-releasing factor neurotianouian in LC: A possible site of anti-depressant action. Brain Research Bulletin. 35 (5–6), 581587.CrossRefGoogle Scholar
Dahl, R. E., Bernhisal-Broadbent, J., Scanlon-Holdford, S., Lupo, M., Sampson, H. A., & Al-Shabbout, M. (1995). Sleep disturbances in children with atopic dermatitis. Archives of Pediatrics and Adolescent Medicine, 149, 856860.CrossRefGoogle ScholarPubMed
Dahl, R. E., Holttum, J., & Trubnick, L. (1994). The clinical presentation of narcolepsy in children and adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 33, 834841.CrossRefGoogle Scholar
Dahl, R. E., Matty, M. K., Birmaher, B., Al-Shabbout, M., Williamson, D. E., & Ryan, N. D. (in press). Sleep onset abnormalities in depressed adolescents. Biological Psychiatry.Google Scholar
Dahl, R. E., Pelham, W. E., & Wierson, M. (1991). The role of sleep disturbances in attention deficit disorder symptoms: A case study. Journal of Pediatric Psychology, 16, 229239.CrossRefGoogle ScholarPubMed
Dahl, R. E., Puig-Antich, J., Ryan, N. D., Nelson, B., Dachille, S., Cunningham, S. L., Trubnick, L., & Klepper, T. P. (1990). EEG sleep in adolescents with major depression: The role of suicidality and inpatient status. Journal of Affective Disorders, 19, 6375.CrossRefGoogle ScholarPubMed
Dahl, R. E., & Ryan, N. D. (in press). The psychobiology of adolescent depression. In Cicchetti, D. & Toth, S. L. (Eds.), Rochester Symposium on developmental psychopathology, Vol. VII: Adolescence-Opportunities and challenges. Rochester, NY: University of Rochester Press.Google Scholar
Dahl, R. E., Ryan, N. D., Birmaher, B., Al-Shabbout, M., Williamson, D. E., Neidig, M., Nelson, B., & Puig-Antich, J. (1991). EEG sleep measures in prepubertal depression. Psychiatry Research, 38, 201214.CrossRefGoogle ScholarPubMed
Dahl, R. E., Ryan, N. D., Perel, J., Birmaher, B., Al-Shabbout, M., Nelson, B., & Puig-Antich, J. (1994). Cholinergic REM induction test with arecoline in depressed children. Psychiatry Research, 51, 269282.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1984). Affect, cognition and hemispheric specialization. In Izard, C. E., Kagan, J., & Zajonc, R. (Eds.), Emotion. cognition and behavior (pp. 320365). New York: Cambridge University Press.Google Scholar
Davidson, R. J. (1994). Asymmetric brain function, affective style, and psychopathology: The role of early experience and plasticity. Development and Psychopathology, 6, 741758.CrossRefGoogle Scholar
Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20, 125151.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1993). Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cognition and Motion, 7, 115138.CrossRefGoogle Scholar
Davidson, R. J., & Fox, N. A. (1982). Asymmetrical brain activity discriminates between positive versus negative affective stimuli in human infants. Science, 218, 12351237.CrossRefGoogle Scholar
Dawson, G., Grofer Klinger, L., Panagiotides, H., Hill, D., & Spieker, S. (1992a). Frontal lobe activity and affective behavior of infants of mothers with depressive symptoms. Child Development, 63, 725737.CrossRefGoogle ScholarPubMed
Dawson, G., Panagiotides, H., Grofer Klinger, L., & Hill, D. (1992b). The role of frontal lobe functioning in the development of self-regulatory behavior in infancy. Brain and Cognition, 20, 152175.CrossRefGoogle Scholar
Dawson, G., Hessl, D., & Frey, K. (1994). Social influences on early developing biological and behavioral systems related to risk for affective disorder. Development and Psychopathology. 6, 759779.CrossRefGoogle Scholar
Derryberry, D., & Reed, M. A. (1994). Attention and temperament. Orienting toward and away from positive and negative signals. Journal of Personality and Social Psychology, 66, 11281139.CrossRefGoogle ScholarPubMed
Derryberry, D., & Tucker, D. M. (1994). Motivating the focus of attention. In Niedenthal, P. & Kitayama, S. (Eds.), The heart's eye: Emotional influences in perception and attention (pp. 167196). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Detrinis, R., Harris, J., & Allen, R. (1990). Effects of partial sleep deprivation in children with major depression and attention deficit hyperactivity disorder (ADHD). Sleep Research, 19, 322.Google Scholar
Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural bases of inhibitory control in reaching. In A. Diamond (Ed.), The development of and neural bases of higher cognitive functions. Annals of the New York Academy of Sciences, 603, 267317.CrossRefGoogle Scholar
Dijk, D. J., Brunner, D. P., & Borbely, A. A. (1991). EEG power density during recovery sleep in the morning. Electroencephalography and Clinical Neurophysiology, 78, 203214.CrossRefGoogle ScholarPubMed
Dimond, S., & Farrington, L. (1977). Emotional response to films shown to the right or left hemisphere of the brain measured by heart rate. Acta Psychologica, 41, 255260.CrossRefGoogle ScholarPubMed
Drevets, W. C., Videen, T. O., MacLeod, A. K., Haller, J. W., & Raichle, M. E. (1992). PET images of blood flow changes during anxiety: Correction. Science, 256, 1696.CrossRefGoogle ScholarPubMed
Dube, S., Dobkin, J. A., Bowler, K. A., Thase, M., & Kupfer, D. J. (1993). Biological Psychiatry, 33, 40A47 (Abstract).Google Scholar
Durand, V. M., & Mindell, J. A. (1990). Behavioral treatment of multiple childhood sleep disorders: Effects on child and family. Behavior Modification, 14, 3749.CrossRefGoogle ScholarPubMed
Emslie, G. J., Rush, A. J., Weinberg, W. A., Rittleman, J. W., & Roffward, H. P. (1994). Sleep EEG features of adolescents with major depression. Biological Psychiatry, 36, 573581.CrossRefGoogle ScholarPubMed
Emslie, G. J., Rush, A. J., Weinberg, W. A., Rintelmann, J. W., & Roffwarg, H. P. (1990). Children with major depression show reduced rapid eye movement latencies. Archives of General Psychiatry, 47, 119124.CrossRefGoogle ScholarPubMed
Engel, A. K., Konig, P., Kreiter, A. K., & Schillen, T. B. et al. , (1992). Temporal coding in the visual cortex: New vistas on integration in the nervous system. Trends in Neuroscience, 15, 218226.CrossRefGoogle Scholar
Ford, D. E., & Kamerow, D. B. (1989). Epidemiological studies of sleep disturbances and psychiatric disorders: An opportunity for prevention? Journal of the American Medical Association, 262, 14791484.CrossRefGoogle Scholar
Fox, N. A., Calkins, S. D., & Bell, M. A. (1994). Neural plasticity and development in the first two years of life: Evidence from cognitive and socioe-motional domains of research. Development and Psychopathology, 6, 677696.CrossRefGoogle Scholar
Fuster, J. M. (1989). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (2nd ed.). New York: Raven Press.Google Scholar
Garber, J., Weiss, B., & Shanley, N. (1993). Cognitions, depressive symptoms, and development in adolescents. Journal of Abnormal Psychology, 102, 4757.CrossRefGoogle ScholarPubMed
George, M. S., Ketter, T. A., & Post, R. M. (1994). Prefrontal cortex dysfunction in clinical depression. Depression, 2, 5972.CrossRefGoogle Scholar
Gillin, J. C. (1994). Sleep and psychoactive drugs of abuse and dependence: In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (pp. 934942). Philadelphia: Saunders.Google Scholar
Glaze, D. G., Frost, J. D., & Jankovic, J. (1983). Sleep in Gilles de la Tourette's syndrome: Disorder of arousal. Neurology, 33, 586.CrossRefGoogle ScholarPubMed
Goetz, R., Puig-Antich, J., Ryan, N., Rabinovich, H., Ambrosini, P. J., Nelson, B., & Krawiec, V. (1987). Electroencephalographic sleep of adolescents with major depression and normal controls Archives of General Psychiatry, 44, 6168.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137156.CrossRefGoogle ScholarPubMed
Graae, F., Tenke, C., Bruder, C., Rotheram-Borus, M. J., Piacentini, J., Castro-Blanco, D., Leite, P., & Towey, J. (1993). Abnormal asymmetry of EEG in female adolescent suicide at tempters. Presented at the 1993 Annual Meeting of the American Academy of Child and Adolescent Psychiatry. San Antonio, TX.Google Scholar
Gray, C. M., Engel, A. K., Konig, P., & Singer, W. (1992). Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties. Visual Neuroscience, 8, 337347.CrossRefGoogle ScholarPubMed
Guilleminault, C., Winkle, R., Korobkin, R., & Simmons, B. (1982). Children and nocturnal snoring: evaluation of the effects of sleep related respiratory resistive load and daytime functioning. European Journal of Pediatrics, 130, 11651171.Google Scholar
Gur, R. E., Skolnick, B. E., Gur, R. C., Caroff, S., Rieger, W., Obrist, W. D., Younkin, D., & Reivich, M.(1984). Brain function in psychiatric disorders. II. Regional cerebral blood flow in medicated unipolar depressives. Archives of General Psychiatry, 41, 695699.CrossRefGoogle ScholarPubMed
Hall, M. H., Dahl, R. E., Dew, M. A., & Reynolds, C. F. (in press). Sleep patterns following major negative life events. Directions in Psychiatry.Google Scholar
Heller, W. (1990). The neuropsychology of emotion: developmental patterns and implications for psychopathology. In Stein, N., Levanthal, B. I., & Trabasso, T. (Eds.), Psychological and biological approaches to emotion (pp. 167211). Hillsdale, NJ: Erlbaum.Google Scholar
Henriques, J. B., & Davidson, R. J. (1990). Regional brain electrical asymmetries discriminate between previously depressed subjects and healthy controls. Journal of Abnormal Psychology, 99, 2231.CrossRefGoogle Scholar
Henriques, J. B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology, 100, 535545.CrossRefGoogle ScholarPubMed
Herscovitch, J., Stuss, D., & Broughton, R. (1980). Changes in cognitive processing following shortterm cumulative partial sleep deprivation and recovery oversleeping. Journal of Clinical Neuropsychology, 2, 301319.CrossRefGoogle Scholar
Horne, J. A. (1988). Sleep loss and “divergent” thinking ability. Sleep, 11, 528536.CrossRefGoogle ScholarPubMed
Horne, J. A. (1993). Human sleep sleep loss and behavior implications for the prefrontal cortex and psychiatric disorder. British Journal of Psychiatry. 162, 413419.CrossRefGoogle ScholarPubMed
Horne, J. A., & Pettitt, A. N. (1985). High incentive effects on vigilance performance during 72 hours total sleep deprivation. Acta Psychologica, 58, 123139.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—Developmental changes in effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Insel, T. R., Gillin, J. C., Moore, A., Mendelson, W. B., Lowenstein, R. J., & Murphy, D. L. (1982). The sleep of patients with obsessive-compulsive disorder. Archives of General Psychiatry. 39, 13721377.CrossRefGoogle ScholarPubMed
Joliot, M., Ribary, U., & Llinas, R. (1994). Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proceedings of the National Academy of Sciences of the United States of America, 91, 1174811751.CrossRefGoogle ScholarPubMed
Jones, B. E. (1994). Basic mechanisms of sleep-wake states: In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (pp. 145162). Philadelphia: Saunders.Google Scholar
Kagan, J. (1981). The second year. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Kagan, J., Reznick, S., & Snidman, N. (1987). Temperamental variation in response to the unfamiliar. Perinatal Development: A Psychobiological Perspective, 421440.Google Scholar
Kahn, A. U., & Todd, S. (1990). Polysomnography findings in adolescents with major depression. Psychiatry Research. 33, 313320.CrossRefGoogle Scholar
King, B. H., Baxter, L. R., Stuber, M., & Fish, B. (1987). Therapeutic sleep deprivation for depression in children. Journal of the American Academy of Child and Adolescent Psychiatry, 26, 928931.CrossRefGoogle ScholarPubMed
Kitayama, I., Nakamura, S., Yaga, T., Murase, S., Nomura, J., Kayahara, T., & Nakano, K. (1994). Degeneration of locus coeruleus axons in stressinduced depression model. Brain Research Bulletin, 35, 573580.CrossRefGoogle Scholar
Knowles, J. B., & MacLean, A. W. (1990). Age-related changes in sleep in depressed and healthy subjects. Neuropsychopharmacology, 3, 251259.Google ScholarPubMed
Kolb, B., & Wishaw, I. Q. (1985). Fundamentals of human Neuropsychology (2nd. ed.). San Francisco: Freeman.Google Scholar
Kopp, C. B. (1989). Regulation of distress and negative emotions: A developmental view. Developmental Psychology, 25, 343354.CrossRefGoogle Scholar
Kopp, C. B. (1992). Emotional distress and control in young children. New Directions For Child Development, 55, 4155.CrossRefGoogle Scholar
Kutcher, S., Williamson, P., Szalai, U., & Marton, P. (1992). REM latency in endogenously depressed adolescents. British Journal of Psychiatry. 161, 399402.CrossRefGoogle ScholarPubMed
LaBerge, D. (1995). Attention processing: The brain's art of mindfulness. Cambridge: Harvard University Press.CrossRefGoogle Scholar
Lahmeyer, H. W., Poznanski, E. O., & Bellur, S. N. (1983). EEG sleep in depressed adolescents. American Journal of Psychiatry. 140, 11501153.Google ScholarPubMed
Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 372385.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1989). Cognitive-emotional interactions in the brain. Cognition and Emotion, 3, 267290.CrossRefGoogle Scholar
Levin, H. S., & Benton, A. L. (1991). Frontal lobe function and dysfunction. New York: Oxford University Press.Google Scholar
Levitt, P. (1995). Experimental approaches that reveal principles of cerebral cortical development. In Gazzaniga, M. S. (Ed.), The cognitive neurosciences (pp. 147163). Cambridge, MA: MIT Press.Google Scholar
Lipsey, J. R., Robinson, R. G., Pearlson, G. D., Rao, K., & Price, T. R. (1983). Mood change following bilateral hemisphere brain injury. British Journal of Psychiatry, 143, 266273.CrossRefGoogle ScholarPubMed
Llinas, R., & Ribary, U. (1993). Coherent 40-Hz oscillation characterizes dream state in humans. Proceedings of the National Academy of Sciences of the United States of America, 90, 20782081.CrossRefGoogle ScholarPubMed
MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum Press.Google Scholar
MacLean, P. D. (1993). Cerebral evolution of emotion. In Lewis, M. & Haviland, J. M. (Eds.), Handbook of emotions (pp. 6783). New York: Guilford Press.Google Scholar
Martinot, J., Hardy, P., Feline, A., Huret, J., Mazoyer, B., Attar-Levy, D., Pappata, S., & Syrota, A. (1990). Left prefrontal glucose hypometabolism in the depressed state: A confirmation. American Journal of Psychiatry, 147, 13131317.Google ScholarPubMed
Mellman, T. A., & Uhde, T. W. (1989). Sleep panic attacks: New clinical findings and theoretical implications. American Journal of Psychiatry, 146, 12041207.Google ScholarPubMed
Naitoh, P., Johnson, L. C., & Lubin, A. (1971). A modification of surface negative slow potential (CNV) in the human brain after sleep loss. Electroencephalography and Clinical Neurophysiology, 30, 1722.CrossRefGoogle ScholarPubMed
Nauta, W. J. H. (1971). The problem of the frontal lobe: A reinterpretation. Journal of Psychological Research, 8, 167187.CrossRefGoogle ScholarPubMed
Navelet, Y., Anders, T. F., & Guilleminault, C. (1976). Narcolepsy in children. In Guilleminault, C., Dement, W. C., & Passouant, P. (Eds.), Narcolepsy (pp. 171177). New York: Spectrum.Google Scholar
Naylor, M., Greden, J., & Alessi, N. (1990). Plasma dexamethasone levels in children given the dexamethasone suppression test. Biological Psychiatry. 27, 592600.CrossRefGoogle ScholarPubMed
Naylor, M. W., King, C. A., Lindsay, K. A., Evans, T., Armelagos, J., Shain, B. N., & Greden, J. F. (1993). Sleep deprivation in depressed adolescents and psychiatric controls. Journal of the American Academy of Child and Adolescent Psychiatry, 32, 753759.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S., Girgus, J. S., & Seligman, M. E. (1992). Predictors and consequences of childhood depressive symptoms: A 5-year longitudinal study. Journal of Abnormal Psychology, 101, 405422.CrossRefGoogle ScholarPubMed
Osaka, T., & Matsumara, H. (1994, 02). Noradrenergic inputs in sleep-related neurons in the preoptic area from the locus coerulcus and the ventrolateral medulla in the rat. Neuroscience Research, 19, 3950.CrossRefGoogle Scholar
Parmeggiani, P. L. (1994). The autonomic nervous system in sleep: In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (pp. 194203). Philadelphia: Saunders.Google Scholar
Pennington, B. F., & Welsh, M. (1995). Neuropsychology and developmental psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental Psychopathology. Cambridge, UK: Cambridge University Press.Google Scholar
Perris, C., & Monakhov, K. (1979). Depressive symptomotology and systemic structural analysis of the EEG. In Gruzelier, J. & Flor-Henry, P. (Eds.), Hemisphere asymmetries of function in psychopathology. Amsterdam/New York/Oxford: Elsevier/North-Holland.Google Scholar
Picchietti, D. L., & Walters, A. S. (1994). Attention deficit hyperactivity disorder and periodic limb movement disorder. Sleep Research, 23, 303.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Posner, M. I., & Dehaene, S. (1994). Attention networks. Trends in Neuroscience, 17, 7579.CrossRefGoogle Scholar
Puig-Antich, J., Goetz, R. R., Hanlon, C., Tabrizi, M. A., Davies, M., & Weitzman, E. (1982). Sleep architecture and REM sleep measures in prepubertal major depressives during an episode. Archives of General Psychiatry, 39, 932939.CrossRefGoogle Scholar
Puig-Antich, J., Goetz, R., Hanlon, C., Tabrizi, M. A., Davies, M., & Weitzman, E. (1983). Sleep architecture and REM sleep measures in prepubertal major depressives: Studies during recovery from a major depressive episode in a drug free state. Archives of General Psychiatry, 40, 187192.CrossRefGoogle Scholar
Rao, U., Dahl, R. E., Ryan, N. D., Birmaher, B., Williamson, D. E., Giles, D. E., Rao, R., Kaufman, J., & Nelson, B. (in press). The relationship between longitudinal clinical course and sleep and Cortisol changes in adolescent depression. Biological Psychiatry.Google Scholar
Rechtschaffen, A., Bergmann, B. M., Everson, C. A., Kushida, C. A., & Gilliland, M. A. (1989). Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep, 12, 6887.Google ScholarPubMed
Robinson, R. G., Kubos, K. L., Starr, L. B., Reo, K., & Price, T. R. (1984). Mood disorders in stroke patients; Importance of location of lesion. Brain, 107, 8193.CrossRefGoogle Scholar
Ross, R. J., Ball, W. A., Sullivan, K. A., & Caroff, S. N. (1989). Sleep disturbance as the hallmark of posttraumatic stress disorder. American Journal of Psychiatry, 146, 697707.CrossRefGoogle ScholarPubMed
Rothbart, M. K., Posner, M. I., & Rosicky, J. (1994). Orienting in normal and pathological development. Development and Psychopathology, 6, 635652.CrossRefGoogle Scholar
Ryan, N. D., Puig-Antich, J., Rabinovich, H., Robinson, D., Ambrosini, P. J., Nelson, B., & Iyengar, S. (1987). The clinical picture of major depression in children and adolescents. Archives of General Psychiatry, 44, 854861.CrossRefGoogle ScholarPubMed
Ryan, N. D., Puig-Antich, J., Rabinovich, H., Ambrosini, P., Robinson, D., Nelson, B., & Nova-cenko, H. (1988). Growth hormone response to desmethylimipramine in depressed and suicidal adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 27, 755758.CrossRefGoogle Scholar
Siegel, J. M. (1994). Brainstem mechanisms generating REM sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (pp. 125144). Philadelphia: Saunders.Google Scholar
Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349374.CrossRefGoogle Scholar
Singer, W. (1995). Time as coding space in neocortical processing: A hypothesis. In Gazzaniga, M. S. (Ed.), The cognitive neurosciences (pp. 91104). Cambridge, MA: MIT Press.Google Scholar
Starkstein, S. E., Maybcrg, H. S., Berthier, M. L., Fedoroff, P., Price, T. R., Dannals, R. F., Wagner, H. N., Leiguarda, R., & Robinson, R. G. (1990). Mania after brain injury: Neuroradiological and metabolic findings. Annals of Neurology, 27, 652659.CrossRefGoogle ScholarPubMed
Starkstein, S. E., Robinson, R. G., Honig, M. A., Parikh, R. M., Joselyn, J., & Price, T. R. (1989). Mood changes after right-hemisphere lesions. British Journal of Psychiatry, 155, 7985.CrossRefGoogle ScholarPubMed
Starkstein, S. E., Robinson, R. G., & Price, T. R. (1987). Comparison of cortical and subcortical lesions in the production of poststroke mood disorders. Brain, 110, 10451059.CrossRefGoogle ScholarPubMed
Steriade, M., Contreras, D., & Amzica, F. (1994). Synchronized sleep oscillations and their paroxysmal developments. Trends in Neuroscience, 17, 199208.CrossRefGoogle ScholarPubMed
Thatcher, R. W. (1994). Psychopathology of early frontal lobe damage: Dependence on cycles of development. Development and Psychopathology, 6, 565596.CrossRefGoogle Scholar
Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Doss, R. C. (1992). Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of Personality and Social Psychology, 62, 676687.CrossRefGoogle ScholarPubMed
Tucker, D. M., Stenslie, C. E., Roth, R. S., & Shearer, S. L. (1981). Right frontal lobe activation and right hemisphere performance decrement during a depressed mood. Archives of General Psychiatry, 38, 169174.CrossRefGoogle ScholarPubMed
Uytdenhoef, P., Portelange, P., Jacquy, J., Charles, G., Linkowski, P., & Mendlewicz, J. (1983). Regional cerebral blood flow and lateralized hemispheric dysfunction in depression. British Journal of Psychiatry. 143, 128132.CrossRefGoogle ScholarPubMed
Valentino, R. J., Page, M., Van Bockstaele, E., & Aston-Jones, G. (1992). Corticotropin-releasing factor innervation of the locus coeruleus region: Distribution of fibers and sources of input. Neuroscience, 48, 689705.CrossRefGoogle ScholarPubMed
Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Overview: Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435443.Google Scholar
Wehr, T. A., Wirz-Justice, A., & Goodwin, F. K. (1979). Phase advance of the circadian sleep-wake cycle as an antidepressant. Science, 206, 210213.CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1993). A connectionist approach to the prefrontal cortex. Journal of Neuropsychiatry, 5, 241253.Google ScholarPubMed
Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window of prefrontal function in children. Developmental Neuropsychology, 7, 131149.CrossRefGoogle Scholar
Wheeler, R. E., Davidson, R. J., & Tomarken, A. J. (1993). Frontal brain asymmetry and emotional reactivity: A biological substrate of affective style. Psychophysiology, 30, 8289.CrossRefGoogle ScholarPubMed
Williamson, D. E., Ryan, N. D., Birmaher, B., Dahl, R. F., Kaufman, J., Rao, U., & Puig-Antich, J. (in press). A case control family history study of depression in adolescents. Journal of the American Academy of Child and Adolescent Psychiatry.Google Scholar
Wu, J. C., & Bunney, W. E. (1990). The biological basis of an antidepressant response to sleep deprivation and relapse: Review and hypothesis. American Journal of Psychiatry, 147, 1421.Google ScholarPubMed
Young, W., Knowles, J. B., MacLean, A. W., Boag, L., & McConville, B. J. (1982). The sleep of childhood depressives: Comparison with age-matched controls. Biological Psychiatry, 17, 11631169.Google ScholarPubMed
Zarcone, V. P., & Benson, K. L. (1994). Sleep and schizophrenia. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 914926). Philadelphia: Saunders.Google Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The regulation of sleep and arousal: Development and psychopathology
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The regulation of sleep and arousal: Development and psychopathology
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The regulation of sleep and arousal: Development and psychopathology
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *