Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T09:23:58.181Z Has data issue: false hasContentIssue false

An integrative theory of attention-deficit/ hyperactivity disorder based on the cognitive and affective neurosciences

Published online by Cambridge University Press:  01 November 2005

JOEL T. NIGG
Affiliation:
Michigan State University
B. J. CASEY
Affiliation:
Weill Medical College of Cornell University

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a behavioral syndrome that arises in early childhood, often co-occurs with conduct disorder and leads, developmentally, to antisocial behavior and substance abuse. Models from cognitive and affective neuroscience have been invoked in an effort to understand the development of ADHD, leading to a broad array of interrelated theories and hypothesized mechanisms. In this paper, we highlight core mechanisms that may cut across several theories and constructs, and thus provide some leverage for further study and conceptualization from a neuroscience perspective. We emphasize the joint operations of frontostriatal and frontocerebellar neural loops in detecting and predicting what and when important events in the environment will occur and their interaction with frontoamygdala loops in assigning emotional significance to these events. We note that weaknesses in the development of these basic operations could lead to decrement in the development of cognitive and affective control and other mental operations mediated by prefrontal cortex during development. In turn, such decrement could lead to many of the phenotypic cognitive and neuropsychological features seen in children with ADHD.This work was supported by National Institute of Mental Health Grants R01-MH59105 and R01-MH63146 to J.T.N. and NIMH R01 MH63255 and NIDA R21 DA15882 to B.J.C.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1991). Basal ganglia thalamocortical circuits: Parallel substrates for motor, oculomotor, prefrontal and limbic functions. Progress in Brain Research 85, 119145.Google Scholar
Amaral, D. G. (1986). Amygdalohippocampal and amygdalocortical projections in the primate brain. Advances in Experimental Medicine and Biology 203, 317.Google Scholar
Anderson, C. M., Polcari, A., Lowen, S. B., Renshaw, P. F., & Teicher, M. H. (2002). Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. American Journal of Psychiatry 159, 13221328.Google Scholar
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin 1, 6594.Google Scholar
Barkley, R. A., Murphy, K. R., & Bush, T. (2001). Variability in time reproduction: Difference in ADHD combined and inattentive subtypes. Journal of the American Academy of Child & Adolescent Psychiatry 44, 169176.Google Scholar
Barkley, R. A., Murphy, K. R., & Kwasnik, D. (1996a). Psychological adjustment and adaptive impairments in young adults with ADHD. Journal of Attention Disorders 1, 4154.Google Scholar
Barkley, R. A., Murphy, K. R., & Kwasnik, D. (1996b). Motor vehicle driving competencies and risks in teens and young adults with ADHD. Pediatrics 98, 10891095.Google Scholar
Bedard, A. C., Nichols, S., Barbosa, J. A., Schachar, R., Logan, G. D., & Tannock, R. (2002). The development of selective inhibitory control across the life span. Developmental Neuropsychology 21, 93111.Google Scholar
Benes, F. M. (2001). The development of prefrontal cortex: The maturation of neurotransmitter systems and their interactions. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 7992). Cambridge, MA: MIT Press.
Berger, A., & Posner, M. I. (2000). Pathologies of brain attentional networks. Neuroscience and Biobehavioral Reviews 24, 35.Google Scholar
Berns, G. S., Cohen, J. D., & Mintun, M. (1997). Brain regions responsive to novelty in the absence of awareness. Science 276, 12721275.Google Scholar
Berquin, P. C., Giedd, J. N., Jacobsen, L. K., Hamburger, S. D., Krain, A. L., Rapoport, J. L., & Castellanos, F. X. (1998). Cerebellum in attention-deficit hyperactivity disorder: A morphometric MRI study. Neurology 4, 10871093.Google Scholar
Berridge, C. W. (2001). Arousal- and attention-related actions of the locus coeruleus–noradrenergic system: Potential target in the therapeutic actions of amphetamine-like stimulants. In M. V. Solanto, A. F. T. Arnsten, & F. X. Castellanos (Eds.), Stimulant drugs and ADHD: Basic and clinical neuroscience (pp. 158184). New York: Oxford University Press.
Bourgeois, J. P., Goldman–Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex 4, 7896.Google Scholar
Brandeis, D., van Leeuwen, T. H., Rubia, K., Vitacco, D., Steger, J., Pascual–Marqui, R. D., & Steinhausen, H. Ch. (1998). Neuroelectric mapping reveals precursor of stop failures in children with attention deficits. Behavioral Brain Research 94, 111125.Google Scholar
Braver, T. S., & Cohen, J. D. (2001). Working memory, cognitive control, and the prefrontal cortex: Computational and empirical studies. Cognitive Processing 2, 2555.Google Scholar
Bush, G., Frazier, J. A., Rauch, S. L., Seidman, L. I., Whalen, P. J., Jenike, M. A., Rosen, B. R., & Biederman, J. (1999). Anterior cingulate cortex dysfunction in ADHD revealed by fMRI and the counting Stroop. Biological Psychiatry 45, 15421552.Google Scholar
Carver, A. C., Livesey, D. J., & Charles, M. (2001). Further manipulation of the stop-signal task: Developmental changes in the ability to inhibit responding with longer stop-signal delays. International Journal of Neuroscience 111, 3953.Google Scholar
Casey, B. J. (2000). Development and disruption of inhibitory mechanisms of attention. In R. S. Siegler & J. L. McClelland (Eds.), Mechanisms of cognitive development: The Carnegie Symposium on Cognition (Vol. 28). Hillsdale, NJ: Erlbaum.
Casey, B. J. (in press). Frontostriatal and frontocerebellar circuitry underlying cognitive control. In U. Mayr, S. W. Keele, & E. Awh (Eds.), Developing individuality in the human brain. Washington, DC: American Psychological Association.
Casey, B. J., Amso, D., & Davidson, M. C. (in press). Learning about learning and development with neuroimaging. In M. Johnsons & Y. Munakata (Eds). Attention and performance XXI: Processes of change in brain and cognitive development Cambridge, MA: MIT Press.
Casey, B. J., Durston, S., & Fossella, J. A. (2001). Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research 1, 267282.Google Scholar
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences 9, 104110.Google Scholar
Castellanos, F. X., Giedd, J. N., Eckburg, P., Marsh, W. L., King, A. C., Hamburger, S. D., & Rapoport, J. L. (1994). Quantitative morphology of the caudate nucleus in attention-deficit hyperactivity disorder. American Journal of Psychiatry, 151, 17911796.Google Scholar
Castellanos, F. X., Geidd, J. N., Marsh, W. L., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., Sarfatti, S. E., Vauss, Y. C., Lange, N., Kaysen, D., Krain, A. L., Ritchie, G. F., Snell, J. W., Pajapakse, J. C., & Rapoport, J. L. (1996). Quantative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry 7, 607616.Google Scholar
Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit hyperactivity disorder: The search for endophenotypes. Nature Reviews: Neuroscience 3, 617628.Google Scholar
Channon, S., Pratt, P., & Robertson, M. M. (2003). Executive function, memory, and learning in Tourette's syndrome. Neuropsychology 17, 247254.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology 8, 597600.Google Scholar
Cohen, J. D., & Servan–Schreiber, D. (1992). Context, cortex and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99, 47.Google Scholar
Davidson, M. C., Horvitz, J. C., Tottenham, N., Durston, S. N., Fossella, J. A., & Casey, B. J. (2003). FMRI investigation of circuitry modulated by violations in stimuli and temporal expectations. Proceedings of the Society for Neuroscience [Abstract].Google Scholar
Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology. International Journal of Personality and Social Psychology 58, 33041.Google Scholar
Denckla, M. B., & Rudell, R. G. (1978). Anomalies of motor development in hyperactive boys. Annals of Neurology 3, 231233.Google Scholar
Diamond, A. (1990). The development and neural bases of memory functions as indexed by the AB and delayed response tasks in human infants and infant monkeys. Annals of the New York Academy of Sciences 608, 267317.Google Scholar
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development 71, 4456.Google Scholar
Douglas, V. I. (1989). Can Skinnerian theory explain attention deficit disorder. A reply to Barkley. In L. M. Bloomingdale & J. A. Sergeant (Eds.), Attention deficit disorder: Current concepts and emerging trends in attentional and behavioral disorders of childhood (pp. 235254). Elmsford, NY: Pergamon Press.
Drevets, W. C., & Raichle, M. E. (1998). Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cognition Emotion 12, 353385.Google Scholar
Durston, S., Tottenham, N., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., Ulug, A. M., & Casey, B. J. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry 53, 871878.Google Scholar
Eliasson, A. C., Rosblad, B., & Forssberg, H. (2004). Disturbances in programming goal-directed arm movements in children with ADHD. Developmental Medicine and Child Neurology 46, 1927.Google Scholar
Finn, P. R., Mazas, C. A., Justus, A. N., & Steinmetz, J. (2002). Early-onset alcoholism with conduct disorder: Go/No Go learning deficits, working memory capacity, and personality. Alcoholism: Clinical and Experimental Research 26, 186206.Google Scholar
Garcia, R., Vouimba, R. M., Baudry, M., & Thompson, R. F. (1999). The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402, 294296.Google Scholar
Giancola, P. R., & Tarter, R. E. (1999). Executive cognitive functioning and risk for substance abuse. Psychological Science 10, 203205.Google Scholar
Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115, 12611279.Google Scholar
Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., Vauss, Y. C., & Rapoport, J. L. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4–18 years. Journal of Comparative Neurology 366, 223230.Google Scholar
Gilberg, C. (2003). Deficits in attention, motor control, and perception: A brief review. Archives Disabled Children 88, 904910.Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., III, Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Science of the United States of America 101, 81748179.Google Scholar
Gorenstein, E. E., & Newman, J. P. (1980). Disinhibitory psychopathology: A new perspective and a model for research. Psychological Review 87, 301315.Google Scholar
Gray, J. A. (1971). The psychobiology of fear and stress. Cambridge: Cambridge University Press.
Groenewegen, H. J., Berendse, H. W., & Haber, S. N. (1993). Organization of the output of the ventral striatopallidal system in the rat: Ventral pallidal efferents. Neuroscience 57, 113142.Google Scholar
Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy 26, 317330.Google Scholar
Haber, S. N., Groenewegen, H. J., Grove, E. A., & Nauta, W. J. (1985). Efferent connections of the ventral pallidum: Evidence of a dual striato pallidofugal pathway. Journal of Comparative Neurology 235, 322335.Google Scholar
Haber, S. N., Kunishio, K., Mizobuchi, M., & Lynd–Balta, E. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. Journal of Neuroscience 15, 48514867.Google Scholar
Haenlein, M., & Caul, W. F. (1987). Attention deficit disorder with hyperactivity: A specific hypothesis of reward dysfunction. Journal of the American Academy of Child and Adolescent Psychiatry 26, 356362.Google Scholar
Hare, T., & Casey, B. J. (2005). The neurobiology and development of cognitive and affective control. Manuscript submitted for publication.
Hare, T., Tottenham, N., Davidson, M. C., Glover, G. H., & Casey, B. J. (2005). Contributions of striatal and amygdala activity in emotion regulation. Biological Psychiatry 57, 624632.Google Scholar
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport 11, 4348.Google Scholar
Hariri, A. R., Mattay, V. S., Tessitore, A., Fera, F., & Weinberger, D. R. (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry 53, 494501.Google Scholar
Hayes, A. E., Davidson, M. C., Keele, S. W., & Rafal, R. D. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience 2, 178198.Google Scholar
Hinshaw, S. P. (1987). On the distinction between attentional deficits/hyperactivity and conduct problems/aggression in child psychopathology. Psychological Bulletin 101, 443463.Google Scholar
Hinshaw, S. P. (2002). Is ADHD an impairing condition in childhood and adolescence? In P. S. Jensen & J. R. Cooper (Eds.), Attention-deficit hyperactivity disorder: State of the science, best practices (pp. 5-15-21). Kingston, NJ: Civic Research Institute.
Huang–Pollock, C. L., Carr, T. H., & Nigg, J. T. (2002). Development of selective attention: Perceptual load influences early versus late attentional selection in children and adults. Developmental Psychology 38, 363375.Google Scholar
Huang–Pollock, C. L., & Nigg, J. T. (2003). Searching for the attention deficit in attention deficit hyperactivity disorder: The case of visuospatial orienting. Clinical Psychology Review 23, 801830.Google Scholar
Hurley, M. J., Mash, D. C., & Jenner, P. (2003). Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson's disease examined by RT-PCR. European Journal of Neuroscience 18, 26682672.Google Scholar
Huttonlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology 387, 167178.Google Scholar
Iaboni, F., Douglas, V. I., & Baker, A. G. (1995). Effects of reward and response costs on inhibition in ADHD children. Journal of Abnormal Psychology 104, 232240.Google Scholar
Iaboni, F., Douglas, V. I., & Ditto, B. (1997). Psychophysiological response of ADHD children to reward and extinction. Psychophysiology 34, 116123.Google Scholar
Iversen, S. D., & Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research 26, 376386.Google Scholar
Ivry, R. B., Spencer, R. M., Zelaznik, H. N., & Diedrichsen, J. (2002). The cerebellum and event timing. Annals of the New York Academy of Sciences 978, 302317.Google Scholar
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews: Neuroscience 2, 475483.Google Scholar
Kagan, J. (2003). Behavioral inhibition as a temperamental category. In R. J. Davidson, K. R. Scherer, & H. H. Goldsmith (Eds.), Handbook of affective sciences (pp. 320331). New York: Oxford University Press.
Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development 58, 14591473.Google Scholar
Keightley, M. L., Winocur, G., Graham, S. J., Mayberg, H. S., Hevenor, S. J., & Grady, C. L. (2003). An fMRI study investigating cognitive modulation of brain regions associated with emotional processing of visual stimuli. Neuropsychologia 41, 585596.Google Scholar
Kimberg, D. Y., & Farrah, M. J. (1998). Is there an inhibitory module in the prefrontal cortex? Working memory and the mechanisms underlying cognitive control. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 739752). Cambridge, MA: MIT Press.
LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry 44, 12291238.Google Scholar
LeDoux, J. E. (1995). Emotion: Clues from the brain. Annual Review in Psychology 46, 209235.Google Scholar
Logan, G. D. (1994). A user's guide to the stop signal paradigm. In D. Dagenbach & T. Carr (Eds.), Inhibition in language, memory, and attention (pp. 189240). San Diego, CA: Academic Press.
Lorber, M. F. (2004). Psychophysiology of aggression, psychopathy, and conduct problems: A meta-analysis. Psychological Bulletin 130, 531552.Google Scholar
Luman, M., Oosterlaan, J., & Sergeant, J. A. (2005). The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal. Clinical Psychology Review 25, 183213.Google Scholar
MacCoon, D. G., Wallace, J. F., & Newman, J. P. (2004). Self-regulation: The context-appropriate allocation of attentional capacity to dominant and non-dominant cues. In R. F. Baumeister & K. D. Vohs, (Eds.), Handbook of self-regulation research (pp. 422444). New York: Guilford Press.
Mannuzza, S., & Klein, R. G. (2000). Long-term prognosis in attention-deficit/hyperactivity disorder. Child and Adolescent Psychiatric Clinics of North America 9, 711726.Google Scholar
McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron 38, 120.Google Scholar
Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia “projections” to the prefrontal cortex of the primate. Cerebral Cortex 9, 926935.Google Scholar
Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology 50, 381425.Google Scholar
Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of Neuroscience 16, 19361947.Google Scholar
Mostofsky, S. H., Reiss, A. L., Lockhart, P., & Denckla, M. B. (1998). Evaluation of cerebellar size in attention-deficit hyperactivity disorder. Journal of Child Neurology 9, 434439.Google Scholar
Nestler, E. J. (2004). Molecular mechanisms of drug addiction. Neuropharmacology, 47(Suppl. 1), 2432.Google Scholar
Newman, J. P., & Wallace, J. F. (1993). Diverse pathways to deficient self-regulation: Implications for disinhibitory psychopathology in children. Clinical Psychology Review 13, 690720.Google Scholar
Nigg, J. T. (1999). The ADHD response inhibition deficit as measured by the Stop Task: Replication with DSM-IV combined type, extension, and qualification. Journal of Abnormal Child Psychology 27, 391400.Google Scholar
Nigg, J. T. (2001). Is ADHD an inhibitory disorder? Psychological Bulletin 127, 571598.Google Scholar
Nigg, J. T. (2003). Response inhibition and disruptive behaviors: Toward a multi-process conception of etiological heterogeneity for ADHD combined type and conduct disorder early onset type. Annals of the New York Academy of Sciences 1008, 170182.Google Scholar
Nigg, J. T., Blaskey, L. B., Huang–Pollock, C., & John, O. P. (2002). ADHD and personality traits: Is ADHD an extreme personality trait? The ADHD Report, 10, 611.Google Scholar
Nigg, J. T., Glass, J. M., Wong, M. M., Poon, E., Jester, J. M., Fitzgerald, H. E., Puttler, L. I., Adams, K. M., & Zucker, R. A. (2004). Neuropsychological executive function in children at elevated risk for alcoholism: Findings in early adolescence. Journal of Abnormal Psychology, 113, 302314.Google Scholar
Nigg, J. T., Hinshaw, S. P., Carte, E. T., & Treuting, J. J. (1998). Neuropsychological correlates of antisocial behavior and comorbid disruptive behavior disorders in children with ADHD. Journal of Abnormal Psychology 107, 468480.Google Scholar
Nigg, J. T., John, O. P., Blaskey, L. G., Huang–Pollock, C. L., Willcutt, E. G., Hinshaw, S. P., & Pennington, B. (2002). Big five dimensions and ADHD symptoms: Links between personality traits and clinical symptoms. Journal of Personality and Social Psychology 83, 451469.Google Scholar
Nigg, J. T., Stavro, G., Ettenhofer, M., Hambrick, D., Miller, T., & Henderson, J. M. (in press). Executive functions and ADHD in adults: Evidence for selective effects on ADHD symptom domains. Journal of Abnormal Psychology 114.
Nigg, J. T., Swanson, J., & Hinshaw, S. P. (1997). Visual–spatial attention in boys with attention-deficit hyperactivity disorder: Lateral effects, methylphenidate response, and results for parents. Neuropsychologia 35, 165176.Google Scholar
Nigg, J. T., Willcutt, E., Doyle, A. E., & Sonuga–Barke, J. S. (2005). Causal heterogeneity in ADHD: Do we need a neuropsychologically impaired subtypes? Biological Psychiatry 57, 12241230.Google Scholar
Nomura, M., Ohira, H., Haneda, K., Iidaka, T., Sadato, N., Okada, T., & Yonekura, Y. (2004). Functional association of the amygdala and ventral prefrontal cortex during cognitive evaluation of facial expressions primed by masked angry faces: An event-related fMRI study. NeuroImage 21, 352363.Google Scholar
Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage 23, 483499.Google Scholar
O'Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., & Dolan, R. J. (2003). Beauty in a smile: The role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia 41, 147155.Google Scholar
Oosterlaan, J., Logan, G. D., & Sergeant, J. A. (1998). Response inhibition in AD/HD, CD, comorbid AD/HD+CD, anxious, and control children: A meta-analysis of studies with the stop task. Journal of Child Psychology and Psychiatry 39, 411425.Google Scholar
Parkinson, J. A., Cardinal, R. N., & Everitt, B. J. (2000). Limbic cortical–ventral striatal systems underlying appetitive conditioning. Progress in Brain Research 126, 263285.Google Scholar
Parkinson, J. A., Dalley, J. W., Cardinal, R. N., Bamford, A., Fehnert, B., Lachenal, G., Rudarakanchana, N., Halkerston, K. M., Robbins, T. W., & Everitt, B. J. (2002). Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: Implications for mesoaccumbens dopamine function. Behavioural Brain Research 137, 149163.Google Scholar
Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry 37, 5187.Google Scholar
Pihl, R. O., Peterson, J., & Finn, P. (1990). Inherited predisposition to alcoholism: Characteristics of sons of male alcoholics. Journal of Abnormal Psychology 99, 291301.Google Scholar
Pliszka, S. R., Carlson, C. L., & Swanson, J. M. (1999). ADHD with comorbid disorders. New York: Guilford Press.
Pliszka, S. R., Hatch, J. P., Borcherding, S. H., & Rogeness, G. A. (1993). Classical conditioning in children with attention deficit hyperactivity disorder (ADHD) and anxiety disorders: A test of Quay's model. Journal of Abnormal Child Psychology 21, 411423.Google Scholar
Powers, R. E., O'Connor, D. T., & Price, D. L. (1989). Noradrenergic systems in human cerebellum. Brain Research 481, 194199.Google Scholar
Quay, H. C. (1988). Attention deficit disorder and the behavioral inhibition system: The relevance of the neuropsychological theory of Jeffrey A. Gray. In L. M. Bloomingdale & J. A. Sergeant (Eds.), Attention deficit disorder: Criteria, cognition, intervention (pp. 117125). Oxford: Pergamon Press.
Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of Abnormal Child Psychology 30, 311326.Google Scholar
Rothbart, M. K., & Bates, J. E. (1998). Temperament. In W. Damon (Series Ed.) & N. Eisenberg (Vol. Ed.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (pp. 105176). New York: Wiley.
Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia 42, 10291040.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science 274, 19261928.Google Scholar
Sagvolden, T., Aase, H., Zeiner, P., & Berger, D. F. (1998). Altered reinforcement mechanisms in attention deficit/hyperactivity disorder. Behavioral Brain Research 94, 6171.Google Scholar
Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral Brain Science 28, 397419.Google Scholar
Schachar, R. J., Tannock, R., & Logan, G. (1993). Inhibitory control, impulsiveness, and attention deficit hyperactivity disorder. Clinical Psychology Review 13, 721739.Google Scholar
Schultz, W., Dayan, P., & Montague, R. R. (1997). A neural substrate of prediction and reward. Science 275, 15931599.Google Scholar
Schultz, W., Tremblay, L., & Hollerman, J. B. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex 10, 272283.Google Scholar
Seguin, J. R., Boulerice, B., Harden, P. W., Tremblay, R. E., & Pihl, R. O. (1999). Executive functions and physical aggression after controlling for attention deficit hyperactivity disorder, general memory, and IQ. Journal of Child Psychology and Psychiatry 40, 11971208.Google Scholar
Sergeant, J. A., Oosterlaan, J., & van der Meere, J. (1999). Information processing and energetic factors in attention-deficit/hyperactivity disorder. In H. C. Quay & A. E. Hogan (Eds.), Handbook of disruptive behavior disorders (pp. 75104). New York: Kluwer/Plenum Press.
Simonoff, E., Elander, J., Holmshaw, J., Pickles, A., Murray, R., & Rutter, M. (2004). Predictors of antisocial personality. Continuities from childhood to adult life. British Journal of Psychiatry 184, 118127.Google Scholar
Snyder, J., Reid, J., & Patterson, G. (2003). A social learning model of child and adolescent antisocial behavior. In B. B. Lahey, T. E. Moffitt, & A. Caspi (Eds.), Causes of conduct disorder and juvenile delinquency (pp. 2748). New York: Guilford Press.
Sonuga–Barke, E. J. S. (2002). Psychological heterogeneity in AD/HD: A dual pathways model of motivation and cognition. Behavioural Brain Research 130, 2936.Google Scholar
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience 10, 859861.Google Scholar
Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience 24, 82238231.Google Scholar
Spencer, R. M., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300, 14371439.Google Scholar
Swanson, J. M., & Castellanos, F. X. (2002). Biological bases of ADHD: Neuroanatomy, genetics, and pathophysiology. In P. S. Jensen & J. R. Cooper (Eds.), Attention-deficit hyperactivity disorder: State of the science, best practices (pp. 7-17-20). Kingston, NJ: Civic Research Institute.
Taylor, J. R., & Jentsch, D. (2001). Stimulant effects on striatal and cortical dopamine systems involved in reward-related behavior and impulsivity. In M. V. Solanto, A. F. T. Arnsten, & F. X. Castellanos, (Eds.), Stimulant drugs and ADHD: Basic and clinical neuroscience (pp. 104133). New York: Oxford University Press.
Thomas, K. M., Hunt, R. H., Vizueta, N., Sommer, T., Durston, S., Yang, Y., & Worden, M. S. (2004). Evidence of developmental differences in implicit sequence learning: An fMRI study of children and adults. Journal of Cognitive Neuroscience 16, 13391351.Google Scholar
Toplak, M. E., Rucklidge, J. J., Hetherington, R., John, S. C. F., & Tannock, R. (2003). Time perception deficits in attention-deficit/hyperactivity disorder and comorbid reading difficulties in child and adolescent samples. Journal of Child Psychology and Psychiatry and Allied Disciplines 44, 116.Google Scholar
Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W. Q., Desmond, J. E., Glover, G. H., & Gabrieli, D. E. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proceedings of the National Academy of Sciences of the United States of America 95, 1449414499.Google Scholar
Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of ADHD: Meta-analytic review. Biological Psychiatry 57, 13361346.Google Scholar