Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T13:38:25.600Z Has data issue: false hasContentIssue false

Effects of a school readiness intervention on hypothalamus–pituitary–adrenal axis functioning and school adjustment for children in foster care

Published online by Cambridge University Press:  18 September 2017

Alice M. Graham
Affiliation:
Oregon Health and Science University
Katherine C. Pears*
Affiliation:
Oregon Social Learning Center
Hyoun K. Kim
Affiliation:
Oregon Social Learning Center Yonsei University
Jacqueline Bruce
Affiliation:
Oregon Social Learning Center
Philip A. Fisher
Affiliation:
Oregon Social Learning Center University of Oregon
*
Address correspondence and reprint requests to: Katherine C. Pears, Oregon Social Learning Center, 10 Shelton McMurphey Boulevard, Eugene, OR 97401; E-mail: katherinep@oslc.org.

Abstract

Maltreated children in foster care are at high risk for dysregulated hypothalamus–pituitary–adrenal (HPA) axis functioning and educational difficulties. The present study examined the effects of a short-term school readiness intervention on HPA axis functioning in response to the start of kindergarten, a critical transition marking entry to formal schooling, and whether altered HPA axis functioning influenced children's school adjustment. Compared to a foster care comparison group, children in the intervention group showed a steeper diurnal cortisol slope on the first day of school, a pattern previously observed among nonmaltreated children. A steeper first day of school diurnal cortisol slope predicted teacher ratings of better school adjustment (i.e., academic performance, appropriate classroom behaviors, and engagement in learning) in the fall of kindergarten. Furthermore, the children's HPA axis response to the start of school mediated the effect of the intervention on school adjustment. These findings support the potential for ameliorative effects of interventions targeting critical transitional periods, such as the transition of formal schooling. This school readiness intervention appears to influence stress neurobiology, which in turn facilitates positive engagement with the school environment and better school adjustment in children who have experienced significant early adversity.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Support for this article was provided by Grants R01 DA021424 and P30 DA023920 from the Division of Epidemiology, Services and Prevention Research, Prevention Research Branch, National Institute of Drug Abuse, US Public Health Service. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the funding organization. The authors thank Deena Scheidt for project management, Sally Schwader for editorial assistance, and the staff and families of the Kids In Transition to School Program for their ongoing dedication and participation.

Drs. Katherine Pears and Philip Fisher are codevelopers of the Kids in Transition to School Program.

References

Abry, T., Latham, S., Bassok, D., & LoCasale-Crouch, J. (2015). Preschool and kindergarten teachers’ beliefs about early school competencies: Misalignment matters for kindergarten adjustment. Early Childhood Research Quarterly, 31, 7888. doi:10.1016/j.ecresq.2015.01.001Google Scholar
Achenbach, T. M. (1991). Manual for the Teacher's Report Form and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Adam, E. K., Hawkley, L. C., Kudielka, B. M., & Cacioppo, J. T. (2006). Day-to-day dynamics of experience—Cortisol associations in a population-based sample of older adults. Proceedings of the National Academy of Sciences, 103, 1705817063.Google Scholar
Al-Hendawi, M. (2013). Temperament, school adjustment, and academic achievement: Existing research and future directions. Educational Review, 65, 177205. doi:10.1080/00131911.2011.648371Google Scholar
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In Marcoulides, G. A. & Schumacker, R. E. (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243277). Hillsdale, NJ: Erlbaum.Google Scholar
Barnett, D., Manly, J. T., & Cicchetti, D. (1993). Defining child maltreatment: The interface between policy and research. In Cicchetti, D. & Toth, S. (Eds.), Child abuse, Child development, and social policy (Vol. 8, pp. 773). Norwood, NJ: Abex Publishing.Google Scholar
Bernard, K., Butzin-Dozier, Z., Rittenhouse, J., & Dozier, M. (2010). Cortisol production patterns in young children living with birth parents vs children placed in foster care following involvement of child protective services. Archives of Pediatrics and Adolescent Medicine, 164, 438443. doi:10.1001/archpediatrics.2010.54Google Scholar
Bernard, K., Zwerling, J., & Dozier, M. (2015). Effects of early adversity on young children's diurnal cortisol rhythms and externalizing behavior. Developmental Psychobiology, 57, 935947. doi:10.1002/dev.21324xGoogle Scholar
Blair, C., & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and Psychopathology, 20, 899911. doi:10.1017/S0954579408000436Google Scholar
Blair, C., Granger, D., & Razza, R. P. (2005). Cortisol reactivity is positively related to executive function in preschool children attending Head Start, 76, 554567. doi:10.1111/j.1467-8624.2005.00863.xGoogle Scholar
Blair, C., & Peters, R. (2003). Physiological and neurocognitive correlates of adaptive behavior in preschool among children in Head Start. Developmental Neuropsychology, 24, 479497. doi:10.1207/S15326942DN2401_04Google Scholar
Bogard, K., & Takanishi, R. (2005). PK-3: An aligned and coordinated approach to education for children 3 to 8 years old. Social Policy Report, 29, 323.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301. doi:10.1017/S0954579405050145Google Scholar
Bruce, J., Davis, E. P., & Gunnar, M. R. (2002). Individual differences in children's cortisol response to the beginning of a new school year. Psychoneuroendocrinology, 27, 635650. doi:10.1016/S0306-4530(01)00031-2Google Scholar
Bruce, J., Fisher, P. A., Pears, K. C., & Levine, S. (2009). Morning cortisol levels in preschool-aged foster children: Differential effects of maltreatment type. Developmental Psychobiology, 51, 1423. doi:10.1002/dev.20333Google Scholar
Burley, M., & Halpern, M. (2001). Educational attainment of foster youth: Achievement and graduation outcomes for children in state care. Olympia, WA: Washington State Institute for Public Policy.Google Scholar
Campbell, F. A., Conti, G., Heckman, J. J., Moon, S. H., Pinto, R., Pungello, E., & Pan, Y. (2014). Early childhood investments substantially boost adult health. Science, 343, 14781485. doi:10.1126/science.1248429Google Scholar
Child Welfare Information Gateway. (2017). Foster care statistics, 2015. Washington, DC: US Department of Health and Human Services, Administration for Children and Families.Google Scholar
Child Welfare League of America. (2012). Oregon's children, 2012. Retrieved from http://www.cwla.org/advocacy/statefactsheets/2012/oregon.pdfGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting and Clinical Psychology, 70, 620. doi:10.1037/0022-006X.70.1.6Google Scholar
Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, S. L. (2010). The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Development, 81, 252269. doi:10.1111/j.1467-8624.2009.01393.xGoogle Scholar
Cook, R., Fleishman, E., & Grimes, V. (1991). A national evaluation of title IV-E foster care independent living programs for youth: Phase 2, final report (Vol. 1). Rockville, MD: Westat.Google Scholar
Davis, E. P., Donzella, B., Krueger, W. K., & Gunnar, M. R. (1999). The start of a new school year: Individual differences in salivary cortisol response in relation to child temperament. Developmental Psychobiology, 35, 188196.Google Scholar
de Kloet, E. R. (1991). Brain corticosteroid receptor balance and homeostatic control. Frontiers in Neuroendocrinology, 12, 95164.Google Scholar
Dodge, K. A., Greenberg, M. T., Malone, P. S., & the Conduct Problems Prevention Research Group. (2008). Testing an idealized dynamic cascade model of the development of serious violence in adolescence. Child Development, 79, 19071927. doi:10.1111/j.1467-8624.2008.01233.xGoogle Scholar
Dozier, M., Manni, M., Gordon, M. K., Peloso, E., Gunnar, M. R., Stovall-McClough, K. C., … Levine, S. (2006). Foster children's diurnal production of cortisol: An exploratory study. Child Maltreatment, 11, 189197. doi:10.1177/1077559505285779Google Scholar
Dozier, M., Peloso, E., Lindhiem, O., Gordon, M. K., Manni, M., Sepulveda, S., … Levine, S. (2006). Developing evidence based interventions for foster children: An example of a randomized clinical trial with infants and toddlers. Journal of Social Issues, 62, 767785. doi:10.1111/j.1540-4560.2006.00486.xGoogle Scholar
Dressendörfer, R. A., Kirschbaum, C., Rohde, W., Stahl, F., & Strasburger, C. J. (1992). Synthesis of a cortisol-biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. Journal of Steroid Biochemistry and Molecular Biology, 43, 683692.Google Scholar
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784.Google Scholar
Fantuzzo, J., & Perlman, S. (2007). The unique impact of out-of-home placement and the mediating effects of child maltreatment and homelessness on early school success. Children and Youth Services Review, 29, 941960. doi:10.1016/j.childyouth.2006.11.003Google Scholar
Fisher, P. A., & Gunnar, M. R. (2010). Early life stress as a risk factor for disease in adulthood. In Lanius, R. A., Vermetten, E., & Pain, C. (Eds.), The impact of early life trauma on health and disease (pp. 133141). Cambridge: Cambridge University Press.Google Scholar
Fisher, P. A., Kim, H. K., Bruce, J., & Pears, K. C. (2012). Cumulative effects of prenatal substance exposure and early adversity on foster children's HPA axis reactivity during a psychosocial stressor. International Journal of Behavioral Development, 36, 2935. doi:10.1177/0165025411406863Google Scholar
Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. (2007). Effects of a therapeutic intervention for foster preschoolers on diurnal cortisol activity. Psychoneuroendocrinology, 32, 892905. doi:10.1016/j.psyneuen.2007.06.008Google Scholar
Fisher, P. A., Van Ryzin, M. J., & Gunnar, M. R. (2011). Mitigating HPA axis dysregulation associated with placement changes in foster care. Psychoneuroendocrinology, 36, 531539. doi:10.1016/j.psyneuen.2010.08.007Google Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016. doi:10.1016/j.psyneuen.2005.04.006Google Scholar
Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18, 233239. doi:10.1111/j.1467-9280.2007.01882Google Scholar
Gagné, F., & Gagnier, N. (2004). The socio-affective and academic impact of early entrance to school. Roeper Review, 26, 128138. doi:10.1080/02783190409554258Google Scholar
Goerge, R. M., Bilaver, L., Lee, B. J., Needell, B., Brookhart, A., & Jackman, W. (2002). Employment outcomes for youth aging out of foster care. Chicago: University of Chicago, Chapin Hall Center for Children.Google Scholar
Graham, A. M., Yockelson, M., Kim, H. K., Bruce, J., Pears, K. C., & Fisher, P. A. (2012). Effects of maltreatment and early intervention on diurnal cortisol slope across the start of school: A pilot study. Child Abuse and Neglect, 36, 666670. doi:10.1016/j.chiabu.2012.07.006Google Scholar
Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology, 34, 6275. doi:10.1016/j.psyneuen.2008.08.013Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.Google Scholar
Hibel, L. C., Granger, D. A., Cicchetti, D., & Rogosch, F. (2007). Salivary biomarker levels and diurnal variation: Associations with medications prescribed to control children's problem behavior. Child Development, 78, 927937. doi:10.1111/j.1467-8624.2007.01041.xGoogle Scholar
Joëls, M., Pu, Z., Wiegert, O., Oitzl, M. S., & Krugers, H. J. (2006). Learning under stress: How does it work? Trends in Cognitive Sciences, 10, 152158. doi:10.1016/j.tics.2006.02.002Google Scholar
Kim, H. K., Buchanan, R., & Price, J. M. (2017). Pathways to preventing substance use among youth in foster care. Prevention Science. Advance online publication. doi:10.1007/s11121-017-0800-6Google Scholar
Kim, H. K., Pears, K. C., Fisher, P. A., Connelly, C., & Landsverk, J. L. (2010). Trajectories of maternal harsh parenting in the first 3 years of life. Child Abuse and Neglect, 34, 897906. doi:10.1016/j.chiabu.2010.06.002Google Scholar
Kirschbaum, C., Steyer, R., Eid, M., Patalla, U., Schwenkmezger, P., & Hellhammer, D. H. (1990). Cortisol and behavior: 2. Application of a latent state-trait model to salivary cortisol. Psychoneuroendocrinology, 15, 297307.Google Scholar
Kuhlman, K. R., Repetti, R. L., Reynolds, B. M., & Robles, T. F. (2016). Change in parent-child conflict and the HPA-axis: Where should we be looking and for how long? Psychoneuroendocrinology, 68, 7481. doi:10.1016/j.psyneuen.2016.02.029Google Scholar
Lee, J. S., Courtney, M. E., & Tajima, E. (2014). Extended foster care support during the transition to adulthood: Effect on the risk of arrest. Children and Youth Services Review, 42, 3442. doi:10.1016/j.childyouth.2014.03.018Google Scholar
Lisonbee, J. A., Mize, J., Payne, A. L., & Granger, D. A. (2008). Children's cortisol and the quality of teacher–child relationships in child care. Child Development, 79, 18181832. doi:10.1111/j.1467-8624.2008.01228.xGoogle Scholar
LoCasale-Crouch, J., Mashburn, A. J., Downer, J. T., & Pianta, R. C. (2008). Pre-kindergarten teachers’ use of transition practices and children's adjustment to kindergarten. Early Childhood Research Quarterly, 23, 124139. doi:10.1016/j.ecresq.2007.06.001Google Scholar
Loman, M. M., & Gunnar, M. R. (2010). Early experience and the development of stress reactivity and regulation in children. Neuroscience & Biobehavioral Reviews, 34, 867876. doi:10.1016/j.neubiorev.2009.05.007Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445. doi:10.1038/nrn2639Google Scholar
MacMillan, H. L., Georgiades, K., Duku, E. K., Shea, A., Steiner, M., Niec, A., … Schmidt, L. A. (2009). Cortisol response to stress in female youths exposed to childhood maltreatment: Results of the Youth Mood Project. Biological Psychiatry, 66, 6268. doi:10.1016/j.biopsych.2008.12.014Google Scholar
Maughan, B., Rowe, R., Messer, J., Goodman, R., & Meltzer, H. (2004). Conduct disorder and oppositional defiant disorder in a national sample: Developmental epidemiology. Journal of Child Psychology and Psychiatry, 45, 609621. doi:10.1111/j.1469-7610.2004.00250.xGoogle Scholar
McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174185. doi:10.1016/j.ejphar.2007.11.071Google Scholar
Mitic, W., & Rimer, M. (2002). The educational attainment of children in care in British Columbia. Child and Youth Care Forum, 31, 397414.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2015). Mplus user's guide (7th ed.). Los Angeles: Author.Google Scholar
Okpych, N. J., & Courtney, M. E. (2014). Does education pay for youth formerly in foster care? Comparison of employment outcomes with a national sample. Children and Youth Services Review, 43, 1828. doi:10.1016/j.childyouth.2014.04.013Google Scholar
O'Neal, C. R., Brotman, L. M., Huang, K.-Y., Gouley, K. K., Kamboukos, D., Calzada, E. J., & Pine, D. S. (2010). Understanding relations among early family environment, cortisol response, and child aggression via a prevention experiment. Child Development, 81, 290305. doi:10.1111/j.1467-8624.2009.01395.xGoogle Scholar
Pears, K. C., Fisher, P. A., Kim, H. K., Bruce, J., Healey, C. V., & Yoerger, K. (2013). Immediate effects of a school readiness intervention for children in foster care. Early Education and Development, 24, 771791. doi:10.1080/10409289.2013.736037Google Scholar
Pears, K. C., Kim, H. K., & Fisher, P. A. (2012). Effects of a school readiness intervention for children in foster care on oppositional and aggressive behaviors in kindergarten. Children and Youth Services Review, 34, 23612366. doi:10.1016/j.childyouth.2012.08.015Google Scholar
Pianta, R. C., Rimm-Kaufman, S. E., & Cox, M. E. (1999). Introduction: An ecological approach to kindergarten transition. In Pianta, R. C. & Cox, M. J. (Eds.), The transition to kindergarten (pp. 312). Baltimore, MD: Paul H. Brookes.Google Scholar
Reynolds, A. J., Magnuson, K. A., & Ou, S.-R. (2010). Preschool-to-third grade programs and practices: A review of research. Children and Youth Services Review, 32, 11211131. doi:10.1016/j.childyouth.2009.10.017Google Scholar
Reynolds, A. J., Temple, J. A., Ou, S.-R., Arteaga, I. A., & White, B. A. B. (2011). School-based early childhood education and age-28 well-being: Effects by timing, dosage, and subgroups. Science, 333, 360364. doi:10.1126/science.1203618Google Scholar
Russ, S. J., Herbert, J., Cooper, P., Gunnar, M. R., Goodyer, I., Croudace, T., & Murray, L. (2012). Cortisol levels in response to starting school in children at increased risk for social phobia. Psychoneuroendocrinology, 37, 462474. doi:10.1016/j.psyneuen.2011.07.014Google Scholar
Sánchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419449.Google Scholar
Sapolsky, R. M., Romero, L., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google Scholar
Saxbe, D. E., Repetti, R. L., & Nishina, A. (2008). Marital satisfaction, recovery from work, and diurnal cortisol among men and women. Health Psychology, 27, 1525. doi:10.1037/0278-6133.27.1.15Google Scholar
Scherr, T. G. (2007). Educational experiences of children in foster care: Meta-analyses of special education, retention and discipline rates. School Psychology International, 28, 419436. doi:10.1177/0143034307084133Google Scholar
Schilling, T. M., Kölsch, M., Larra, M. F., Zech, C. M., Blumenthal, T. D., Frings, C., & Schächinger, H. (2013). For whom the bell (curve) tolls: Cortisol rapidly affects memory retrieval by an inverted U-shaped dose-response relationship. Psychoneuroendocrinology, 38, 15621572. doi:10.1016/j.psyneuen.2013.01.001Google Scholar
Schlotz, W. (2011). Ambulatory psychoneuroendocrinology: Assessing salivary cortisol and other hormones in daily life. In Mehl, M. & Conner, T. (Eds.), Handbook of research methods for studying daily life (pp. 193209). New York: Guilford Press.Google Scholar
Slopen, N., McLaughlin, K. A., & Shonkoff, J. P. (2014). Interventions to improve cortisol regulation in children: A systematic review. Pediatrics, 133, 312326. doi:10.1542/peds.2013-1632Google Scholar
Smider, N. A., Essex, M. J., Kalin, N. H., Buss, K. A., Klein, M. H., Davidson, R. J., & Goldsmith, H. H. (2002). Salivary cortisol as a predictor of socioemotional adjustment during kindergarten: A prospective study. Child Development, 73, 7592. doi:10.1111/1467-8624.00393Google Scholar
Smyth, N., Clow, A., Thorn, L., Hucklebridge, F., & Evans, P. (2013). Delays of 5–15 min between awakening and the start of saliva sampling matter in assessment of the cortisol awakening response. Psychoneuroendocrinology, 38, 14761483. doi:10.1016/j.psyneuen.2012.12.013Google Scholar
Spoth, R., Guyll, M., & Shin, C. (2009). Universal intervention as a protective shield against exposure to substance use: Long-term outcomes and public health significance. American Journal of Public Health, 99, 20262033. doi:10.2105/AJPH.2007.133298Google Scholar
Stalder, T., Kirschbaum, C., Kudielka, B. M., Adam, E. K., Pruessner, J. C., Wüst, S., … Clow, A. (2016). Assessment of the cortisol awakening response: Expert consensus guidelines. Psychoneuroendocrinology, 63, 414432. doi:10.1016/j.psyneuen.2015.10.010Google Scholar
Stoolmiller, M. (1995). Using latent growth curve models to study developmental processes. In Gottman, J. M. (Ed.), The analysis of change (pp. 105138). Mahwah, NJ: Erlbaum.Google Scholar
Trout, A. L., Hagaman, J., Casey, K., Reid, R., & Epstein, M. H. (2008). The academic status of children and youth in out-of-home care: A review of the literature. Children and Youth Services Review, 30, 979994. doi:10.1016/j.childyouth.2007.11.019Google Scholar
Turner-Cobb, J. M., Rixon, L., & Jessop, D. S. (2008). A prospective study of diurnal cortisol responses to the social experience of school transition in four-year-old children: Anticipation, exposure, and adaptation. Developmental Psychobiology, 50, 377389. doi:10.1002/dev.20298Google Scholar
Ursache, A., Blair, C., & Raver, C. C. (2012). The promotion of self-regulation as a means of enhancing school readiness and early achievement in children at risk for school failure. Child Development Perspectives, 6, 122128. doi:10.1111/j.1750-8606.2011.00209.xGoogle Scholar
Wardenaar, K. J., Vreeburg, S. A., van Veen, T., Giltay, E. J., Veen, G., Penninx, B. W., & Zitman, F. G. (2011). Dimensions of depression and anxiety and the hypothalamo–pituitary–adrenal axis. Biological Psychiatry, 69, 366373.Google Scholar
Wechsler, D. (1989). Manual for the Wechsler Preschool and Primary Scales of Intelligence—Revised. San Antonio, TX: Psychological Corporation.Google Scholar
Zima, B. T., Bussing, R., Freeman, S., Yang, X., Belin, T. R., & Forness, S. R. (2000). Behavior problems, academic skill delays, and school failure among school-aged children in foster care: Their relationship to placement characteristics. Journal of Child and Family Studies, 9, 87103. doi:10.1023/A:1009415800475Google Scholar