Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T15:48:42.329Z Has data issue: false hasContentIssue false

The serotonin transporter linked polymorphic region and brain-derived neurotrophic factor valine to methionine at position 66 polymorphisms and maternal history of depression: Associations with cognitive vulnerability to depression in childhood

Published online by Cambridge University Press:  23 July 2013

Elizabeth P. Hayden*
Affiliation:
University of Western Ontario
Thomas M. Olino
Affiliation:
Stony Brook University
Sara J. Bufferd
Affiliation:
Stony Brook University
Anna Miller
Affiliation:
Stony Brook University
Lea R. Dougherty
Affiliation:
Stony Brook University
Haroon I. Sheikh
Affiliation:
University of Western Ontario
Shiva M. Singh
Affiliation:
University of Western Ontario
Daniel N. Klein
Affiliation:
Stony Brook University
*
Address correspondence and reprint requests to: Elizabeth P. Hayden, University of Western Ontario, Department of Psychology, London, ON N6A 3K7, Canada; E-mail: ehayden@uwo.ca.

Abstract

Preliminary work indicates that cognitive vulnerability to depression may be associated with variants of the serotonin transporter promoter polymorphism (5-HTTLPR) and the valine to methionine at position 66 (val66met) polymorphism of the brain-derived neurotrophic factor (BDNF) gene; however, existing reports come from small samples. The present study sought to replicate and extend this research in a sample of 375 community-dwelling children and their parents. Following a negative mood induction, children completed a self-referent encoding task tapping memory for positive and negative self-descriptive traits. Consistent with previous work, we found that children with at least one short variant of the 5-HTTLPR had enhanced memory for negative self-descriptive traits. The BDNF val66met polymorphism had no main effect but was moderated by maternal depression, such that children with a BDNF methionine allele had a heightened memory for negative self-descriptive traits when mothers had experienced depression during children's lifetimes; in contrast, children with a methionine allele had low recall of negative traits when mothers had no depression history. The findings provide further support for the notion that the 5-HTTLPR is associated with cognitive markers of depression vulnerability and that the BDNF methionine allele moderates children's sensitivity to contextual factors.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abela, J. R. Z., & Hankin, B. L. (2008). Cognitive vulnerability to depression in children and adolescents: A developmental psychopathology perspective. New York: Guilford Press.Google Scholar
Aguilera, M., Arias, B., Wichers, M., Barrantes-Vidal, N., Moya, J., Villa, H., et al. (2009). Early adversity and 5-HTT/BDNF genes: New evidence of gene–environment interactions on depressive symptoms in a general population. Psychological Medicine, 39, 14251432.Google Scholar
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
Beck, A. T. (1976). Cognitive therapy and the emotional disorders. Oxford: International Universities Press.Google Scholar
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165, 969977.CrossRefGoogle ScholarPubMed
Beevers, C. G., Ellis, A. J., Wells, T. T., & McGeary, J. E. (2010). Serotonin transporter gene promoter region polymorphism and selective processing of emotional images. Biological Psychology, 83, 260265.Google Scholar
Beevers, C. G., Pacheco, J., Clasen, P., McGeary, J. E., & Schnyer, D. (2010). Lateral prefrontal cortex morphology and biased attention for emotional stimuli: Moderation by the serotonin transporter promoter region gene. Genes, Brain, and Behavior, 9, 224233.CrossRefGoogle Scholar
Beevers, C. G., Scott, W. D., McGeary, C., & McGeary, J. E. (2009). Negative cognitive response to a sad mood induction: Associations with polymorphisms of the serotonin transporter (5-HTTLPR) gene. Cognition and Emotion, 23, 726738.Google Scholar
Beevers, C. G., Wells, T. T., Ellis, A. J., & McGeary, J. E. (2009). Association of the serotonin transporter gene promoter region (5-HTTLPR) polymorphism with biased attention for emotional stimuli. Journal of Abnormal Psychology, 118, 670681.CrossRefGoogle ScholarPubMed
Beevers, C. G., Wells, T. T., & McGeary, J. E. (2009). The BDNF Val66Met polymorphism is associated with rumination in healthy adults. Emotion, 9, 579584.Google Scholar
Bekinschtein, P., Cammarota, M., Katche, C., Slipczuk, L., Rossato, J. I., Goldin, A., et al. (2008). BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Science, 105, 27112716.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Blakely, R. D., & Veenstra-VanderWeele, J. (2011). Genetic indeterminism, the 5-HTTLPR, and the paths forward in neuropsychiatric genetics. Archives of General Psychiatry, 68, 457458.Google Scholar
Boulle, F., van den Hove, D. L. A., Jakob, S. B., Rutten, B. P., Hamon, M., van Os, J., et al. (2012). Epigenetic regulation of the BDNF gene: Implications for psychiatric disorders. Molecular Psychiatry, 17, 584596.Google Scholar
Brenner, E. (2000). Mood induction in children: Methodological issues and clinical implications. Review of General Psychology, 4, 264283.Google Scholar
Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J.-K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59, 812815.Google Scholar
Carroll, J. B., Davies, P., & Richman, B. (1971). Word frequency book (1st ed.). New York: American Heritage.Google Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.Google Scholar
Chen, Z.-Y., Patel, P. D., Sant, G., Meng, C.-X., Teng, K. K., Hempstead, B. L., et al. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. Journal of Neuroscience, 24, 44014411.Google Scholar
Chorbov, V. M., Lobos, E. A., Todorov, A. A., Health, A. C., Botteron, K. N., & Todd, R. D. (2007). Relationship of 5-HTTLPR genotypes and depression risk in the presence of trauma in a female twin sample. American Journal of Medical Genetics, 114B, 830833.Google Scholar
Cole, D. A., Ciesla, J. A., Dallaire, D. H., Jacquez, F. M., Pineda, A. Q., LaGrange, B., et al. (2008). Emergence of attributional style and its relation to depressive symptoms. Journal of Abnormal Psychology, 117, 1631.Google Scholar
Crisan, L. G., Pana, S., Vulturar, R., Heilman, R. M., Szekely, R., Druga, B., et al. (2009). Genetic contributions of the serotonin transporter to social learning of fear and economic decision making. Social, Cognitive, and Affective Neuroscience, 4, 399408.CrossRefGoogle ScholarPubMed
Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 11161127.Google Scholar
Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.Google Scholar
Dunn, L. M., & Dunn, L. M. (1997). Peabody Picture Vocabulary Test 4 (3rd ed.). Circle Pines, MN: American Guidance Service.Google Scholar
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., & Bertolino, A. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257269.Google Scholar
Ellis, B. J., & Boyce, W. T. (2008). Biological sensitivity to context. Current Directions in Psychological Science, 17, 183187.Google Scholar
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996). The Structured Clinical Interview for DSM-IV Axis I Disorders—Non-patient edition (1st ed.). New York: New York State Psychiatric Institute.Google Scholar
Fox, E., Ridgewell, A., & Ashwin, C. (2009). Looking on the bright side: Biased attention and the human serotonin transporter gene. Proceedings of the Royal Society Biological Sciences, 276, 17471751.Google Scholar
Garber, J., Gallerani, C. M., & Frankel, S. A. (2009). Depression in children. In Gotlib, I. H. & Hammen, C. L. (Eds.), Handbook of depression (2nd ed., pp. 405443). New York: Guilford Press.Google Scholar
Garber, J., & Kaminski, K. M. (2000). Laboratory and performance-based measures of depression in children and adolescents. Journal of Clinical Child Psychology, 29, 509525.Google Scholar
Garber, J., & Martin, N. C. (2002). Negative cognitions in offspring of depressed parents: Mechanisms of risk. In Goodman, S. H. & Gotlib, I. H. (Eds.), Children of depressed parents: Mechanisms of risk and implications for treatment (pp. 121153). Washington, DC: American Psychological Association.Google Scholar
Gibb, B. E., Benas, J. S., Grassia, M., & McGeary, J. (2009). Children's attentional biases and 5-HTTLPR genotype: Potential mechanisms linking mother and child depression. Journal of Clinical Child and Adolescent Psychology, 38, 415426.Google Scholar
Gibb, B. E., Uhrlass, D. J., Grassia, M., Benas, J. S., & McGeary, J. (2009). Children's inferential styles, 5-HTTLPR genotype, and maternal expressed emotion–criticism: An integrated model for the intergenerational transmission of depression. Journal of Abnormal Psychology, 118, 734745.Google Scholar
Goodman, S. H., & Brand, S. R. (2008). Parental psychopathology and its relation to child psychopathology. In Hersen, M. & Gross, A. M. (Eds.), Handbook of clinical psychology (pp. 937965). Hoboken, NJ: Wiley.Google Scholar
Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847851.CrossRefGoogle ScholarPubMed
Hankin, B. L. (2008). Stability of cognitive vulnerabilities to depression: A short-term prospective multiwave study. Journal of Abnormal Psychology, 117, 324333.CrossRefGoogle ScholarPubMed
Hankin, B. L., Nederhof, E., Oppenheimer, C., Jenness, J., Young, J. F., Abela, J. R. Z., et al. (2011). Differential susceptibility in youth: Evidence that 5-HTTLPR × Positive Parenting is associated with positive affect “for better and worse.” Translational Psychiatry, 1, e44.CrossRefGoogle Scholar
Hankin, B. L., Oppenheimer, C., Jenness, J., Barrocas, A., Shapero, B. G., & Goldband, J. (2009). Developmental origins of cognitive vulnerabilities to depression: Review of processes contributing to stability and change across time. Journal of Clinical Psychology, 65, 13271338.Google Scholar
Hariri, A. R., Drabant, E. M., Munoz, K. E., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146152.Google Scholar
Hariri, A. R., & Holmes, A. (2006). Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends in Cognitive Sciences, 10, 182191.Google Scholar
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400403.Google Scholar
Hayden, E. P., Dougherty, L. R, Maloney, B., Durbin, C. E., Olino, T. M., Nurnberger, J. I., et al. (2007). Temperamental fearfulness in childhood and the serotonin transporter promoter region polymorphism: A multimethod association study. Psychiatric Genetics, 17, 135142.Google Scholar
Hayden, E. P., Dougherty, L. R., Maloney, B., Olino, T. M., Sheikh, H., Durbin, C. E., et al. (2008). Early-emerging cognitive vulnerability to depression and the serotonin transporter promoter region polymorphism. Journal of Affective Disorders, 107, 227230.Google Scholar
Hayden, E. P., Klein, D. N., Dougherty, L. R., Olino, T. M., Dyson, M. W., Durbin, C. E., et al. (2010). The role of brain-derived neurotrophic factor genotype, parental depression, and relationship discord in predicting early-emerging negative emotionality. Psychological Science, 21, 16781685.Google Scholar
Hayden, E. P., Klein, D. N., Durbin, C. E., & Olino, T. M. (2006). Positive emotionality at age 3 predicts cognitive styles in 7-year-old children. Development and Psychopathology, 18, 409423.Google Scholar
Hayden, E. P., Klein, D. N., Sheikh, H. I., Olino, T. M., Dougherty, L. R., Dyson, M.W., et al. (2010). The serotonin transporter promoter polymorphism and childhood positive and negative emotionality. Emotion, 10, 696702.Google Scholar
Hayden, E. P., Sheikh, H. I., Katsiroumbas, P., Jordan, P., Singh, S. M., Olino, T. M., et al. (2010). Early-emerging depressogenic information processing: Stability across time and associations with childhood individual differences and early contextual factors. Paper presented at the annual meeting of the Association for Cognitive and Behavior Therapies, San Francisco, CA.Google Scholar
Hilt, L. M., Sander, L. C., Nolen-Hoeksema, S., & Simen, A. A. (2007). The BDNF Val66Met polymorphism predicts rumination and depression differently in young adolescent girls and their mothers. Neuroscience Letters, 429, 1216.Google Scholar
Hollingshead, A. B. (1975). Four Factor Index of Social Status. Unpublished manuscript.Google Scholar
Homberg, J. R., & Lesch, K.-P. (2011). Looking on the bright side of serotonin transporter gene variation. Biological Psychiatry, 69, 513519.Google Scholar
Houlihan, L. M., Harris, S. E., Luciano, M., Gow, A. J., Starr, J. M., Visscher, P. M., et al. (2009). Replication study of candidate genes for cognitive abilities: The Lothian birth cohort 1936. Genes, Brain & Behavior, 8, 238247.Google Scholar
Hu, X., Oroszi, G., Chun, J., Smith, T. L., Goldman, D., & Schuckit, M. A. (2005). An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcoholism: Clinical and Experimental Research, 29, 816.Google Scholar
Hutchison, K. E., Stallings, M., McGeary, J., & Bryan, A. (2004). Population stratification in the candidate gene study: Fatal threat or red herring? Psychological Bulletin, 130, 6679.Google Scholar
Ialongo, N. S., Edelsohn, G., & Kellam, S. G. (2001). A further look at the prognostic power of young children's reports of depressed mood. Child Development, 72, 736747.Google Scholar
Jedema, H. P., Gianaros, P. J., Greer, P. J., Kerr, D. D., Liu, S., Higley, J. D., et al. (2009). Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Molecular Psychiatry, 15, 512522.Google Scholar
Joormann, J. (2009). Cognitive aspects of depression. In Gotlib, I. H. & Hammen, C. L. (Eds.), Handbook of depression (2nd ed., pp. 298321). New York: Guilford Press.Google Scholar
Joorman, J., Talbot, L., & Gotlib, I. H. (2007). Biased processing of emotional information in girls at risk for depression. Journal of Abnormal Psychology, 116, 135143.Google Scholar
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry. Advance online publication.Google Scholar
Kaufman, J., Yang, B., Douglas-Palumberi, H., Grasso, D., Lipschitz, D., Houshyar, S., et al. (2006). Brain-derived neurotrophic factor-5-HHTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry, 59, 673680.Google Scholar
Klein, D. N., Riso, L.P., Donaldson, S. K., Schwartz, J. E., Anderson, R. L., Ouimette, P. C., et al. (1995). Family study of early-onset dysthymia: Mood and personality disorders in relatives of outpatients with dysthymia and episodic major depression and normal controls. Archives of General Psychiatry, 52, 487496.Google Scholar
Klein, D. N., Shankman, S. A., Lewinsohn, P. M., Rohde, P., & Seeley, J. R. (2004). Family study of chronic depression in a community sample of young adults. American Journal of Psychiatry, 161, 646653.Google Scholar
Klein, D. N., Shankman, S. A., & Rose, S. (2006). Ten-year prospective follow-up study of the naturalistic course of dysthymic disorder and double depression. American Journal of Psychiatry, 163, 872880.Google Scholar
Kovacs, M., & Beck, A. T. (1977). An empirical–clinical approach toward a definition of childhood depression. In Schulterbrandt, J. G. & Raskin, A. (Eds.), Depression in childhood: Diagnosis, treatment, and conceptual models (pp. 125). New York: Raven Press.Google Scholar
Kujawa, A. J., Torpey, D., Kim, J., Hajcak, G., Rose, S., Gotlib, I. H., et al. (2011). Attentional biases for emotional faces in young children of mothers with chronic or recurrent depression. Journal of Abnormal Child Psychology, 39, 125135.Google Scholar
Lesch, K., Bengel, D., Heils, A., & Sabol, S. Z. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Lovejoy, M. C., Graczyk, P. A., O'Hare, E., & Neuman, G. (2000). Maternal depression and parenting behavior: A meta-analytic review. Clinical Psychology Review, 20, 561592.CrossRefGoogle ScholarPubMed
Mao, L. M., Fibuch, E. E., & Wang, J. Q. (2010). Decoding BDNF-LTP coupling in cocaine addiction. Neuron, 67, 679681.Google Scholar
Mineka, S., Rafaeli, E., & Yovel, I. (2003). Cognitive biases in emotional disorders: Social– cognitive and information processing perspectives. In Davidson, R., Goldsmith, H., & Scherer, K. (Eds.), Handbook of affective science (pp. 9761009). Oxford: Oxford University Press.Google Scholar
Miranda, J., Gross, J. J., Persons, J. B., & Hahn, J. (1998). Mood matters: Negative mood induction activates dysfunctional attitudes in women vulnerable to depression. Cognitive Therapy and Research, 22, 363376.Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of Genetic Psychiatry, 62, 473481.Google Scholar
Munafò, M. R., Brown, S. M., & Hariri, A. R. (2008). Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biological Psychiatry, 63, 852857.Google Scholar
Munafò, M. R., Freimer, N. B., Ng, W., Ophoff, R., Veijola, J., Miettunen, J., et al. (2009). 5-HTTLPR genotype and anxiety-related personality traits: A meta-analysis and new data. American Journal of Medical Genetics, 150B, 271281.Google Scholar
Nigg, J. T., Blaskey, L. G., Stawicki, J. A., & Sachek, J. (2004). Evaluating the endophenotype model of ADHD neuropsychological deficit: Results for parents and siblings of children with ADHD combined and inattentive subtypes. Journal of Abnormal Psychology, 113, 614625.Google Scholar
Pencea, V., Bingaman, K. D., Wiegand, S. J., & Luskin, M. B. (2001). Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. Journal of Neuroscience, 21, 67066717.Google Scholar
Perepletchikova, F., & Kaufman, J. (2011). Genetic and environmental predictors of depression. In Kendler, K. S., Jaffee, S., & Romer, D. (Eds.), The dynamic genome and mental health: The role of genes and environments in youth development (pp. 272293). New York: Oxford University Press.Google Scholar
Petryshen, T. L., Sabeti, P. C., Aldinger, K. A., Fry, B., Fan, J. B., Schaffner, S. F., et al. (2009). Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Molecular Psychiatry, 15, 810815.Google Scholar
Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 1009910102.Google Scholar
Pine, D. S., Helfinstein, S. M., Bar-Haim, Y., Nelson, E., & Fox, N. A. (2009). Challenges in developing novel treatments for childhood disorders: Lessons from research on anxiety. Neuropsychopharmacology, 34, 213228.Google Scholar
Richey, J. A., Schmidt, N. B., Lonigan, C. J., Phillips, B. M., Catanzaro, S. J., Laurent, J., et al. (2009). The latent structure of child depression: A taxometric analysis. Journal of Child Psychology and Psychiatry, 50, 11471155.Google Scholar
Risch, N., Herrell, R., Lehner, T., Liang, K., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. Journal of the American Medical Association, 301, 24622471.Google Scholar
Roiser, J. P., Muller, U., Clark, L., & Sahakian, B. J. (2007). The effects of acute tryptophan depletion and serotonin transporter polymorphism on emotional processing in memory and attention. International Journal of Neuropsychopharmacology, 10, 449461.Google Scholar
Scher, C. D., Ingram, R. E., & Segal, Z. V. (2005). Cognitive reactivity and vulnerability: Empirical evaluation of construct activation and cognitive diatheses in unipolar depression. Clinical Psychology Review, 25, 487510.Google Scholar
Schule, C., Zill, P., Baghai, T. C., Eser, D., Zwanzger, P., Wenig, N., et al. (2006). Brain-derived neurotrophic factor Val66Met polymorphism and dexamethasone/CRH test results in depressed patients. Psychoneuroendocrinology, 31, 10191025.Google Scholar
Segal, Z. V., & Ingram, R. E. (1994). Mood priming and construct activation in tests of cognitive vulnerability to unipolar depression. Clinical Psychology Review, 14, 663695.CrossRefGoogle Scholar
Sheikh, H. I., Hayden, E. P., Singh, S. M., Dougherty, L. R., Olino, T. M., Durbin, C. E., et al. (2008). An examination of the association between the 5-HTT promoter region polymorphism and depressogenic attributional styles in childhood. Personality and Individual Differences, 45, 425428.Google Scholar
Shimizu, E., Hashimoto, K., & Iyo, M. (2004). Ethnic difference of the BDNF 196G/A (val66met) polymorphism frequencies: The possibility to explain ethnic mental traits. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 126B, 122123.Google Scholar
Taylor, L., & Ingram, R. E. (1999). Cognitive reactivity and depressotypic information processing in children of depressed mothers. Journal of Abnormal Psychology, 108, 202210.Google Scholar
Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 1822.Google Scholar
Watters, A. J., & Williams, L. M. (2011). Negative biases and risk for depression: Integrating self-report and emotion task markers. Depression and Anxiety, 28, 703718.Google Scholar
Zimmerman, M., Sheeran, T., & Young, D. (2004). The Diagnostic Inventory for Depression: A self-report scale to diagnose DSM-IV major depressive disorder. Journal of Clinical Psychology, 60, 87110.CrossRefGoogle ScholarPubMed