Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T15:20:01.530Z Has data issue: false hasContentIssue false

Stress effects on cognitive function in patients with major depressive disorder: Does childhood trauma play a role?

Published online by Cambridge University Press:  01 August 2019

Linn K. Kuehl*
Affiliation:
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
Katharina Schultebraucks
Affiliation:
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany Department of Psychiatry, New York University School of Medicine, New York, NY, USA
Christian E. Deuter
Affiliation:
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
Anita May
Affiliation:
Asklepios Fachklinikum Tiefenbrunn, Rosdorf, Germany
Carsten Spitzer
Affiliation:
Asklepios Fachklinikum Tiefenbrunn, Rosdorf, Germany
Christian Otte
Affiliation:
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
Katja Wingenfeld
Affiliation:
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
*
Author for Correspondence: Linn K. Kuehl, PhD, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203Berlin, Germany, Phone: +49 30 450 517625, Email: linn.kuehl@charite.de

Abstract

Impaired cognitive functioning constitutes an important symptom of major depressive disorder (MDD), potentially associated with elevated cortisol levels. Adverse childhood experiences (ACE) enhance the risk for MDD and can contribute to disturbances in the stress systems, including cortisol and cognitive functions. In healthy participants, cortisol administration as well as acute stress can affect cognitive performance. In the current study, we tested cognitive performance in MDD patients with (N = 32) and without (N = 52) ACE and healthy participants with (N = 22) and without (N = 37) ACE after psychosocial stress induction (Trier Social Stress Test, TSST) and a control condition (Placebo-TSST). MDD predicted lower performance in verbal learning and both selective and sustained attention, while ACE predicted lower performance in psychomotoric speed and working memory. There were no interaction effects of MDD and ACE. After stress, MDD patients were more likely to show lower performance in working memory as well as in selective and sustained attention compared with participants without MDD. Individuals with ACE were more likely to show lower performance in verbal memory after stress compared with individuals without ACE. Our results indicate negative effects of MDD and ACE on distinct cognitive domains. Furthermore, MDD and/or ACE seem to enhance susceptibility for stress-related cognitive impairments.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, A. T., Steer, R. A., Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Behnken, A., Bellingrath, S., Symanczik, J. P., Rieck, M. J., Zavorotnyy, M., Domschke, K., … Zwanzger, P. (2013). Associations between cognitive performance and cortisol reaction to the DEX/CRH test in patients recovered from depression. Psychoneuroendocrinology, 38, 447454.CrossRefGoogle ScholarPubMed
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Zule, W. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl, 27, 169190.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vermetten, E., & Mazure, C. M. (2000). Development and preliminary psychometric properties of an instrument for the measurement of childhood trauma: The Early Trauma Inventory. Depress Anxiety, 12, 112. doi:10.1002/1520-6394(2000)12:1<1::aid-da1>3.0.co;2-w3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Brickenkamp, R. (1978). Test d2 Handanweisung (Test d2). Gottingen, Germny: Hogrefe.Google Scholar
Bunea, I. M., Szentagotai-Tatar, A., & Miu, A. C. (2017). Early-life adversity and cortisol response to social stress: A meta-analysis. Transl Psychiatry, 7, 1274. doi:10.1038/s41398-017-0032-3CrossRefGoogle ScholarPubMed
Calfa, G., Kademian, S., Ceschin, D., Vega, G., Rabinovich, G. A., & Volosin, M. (2003). Characterization and functional significance of glucocorticoid receptors in patients with major depression: Modulation by antidepressant treatment. Psychoneuroendocrinology, 28, 687701.CrossRefGoogle ScholarPubMed
Chen, Y., & Baram, T. Z. (2016). Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology, 41, 197206. doi:10.1038/npp.2015.181CrossRefGoogle ScholarPubMed
Cornelisse, S., van Stegeren, A. H., & Joels, M. (2011). Implications of psychosocial stress on memory formation in a typical male versus female student sample. Psychoneuroendocrinology, 36, 569578. doi:10.1016/j.psyneuen.2010.09.002CrossRefGoogle Scholar
Deuter, C. E., Wingenfeld, K., Schultebraucks, K., Otte, C., & Kuehl, L. K. (2019). Influence of glucocorticoid and mineralocorticoid receptor stimulation on task switching. Horm Behav, 109, 1824. doi:10.1016/j.yhbeh.2019.01.007CrossRefGoogle ScholarPubMed
Domes, G., Heinrichs, M., Reichwald, U., & Hautzinger, M. (2002). Hypothalamic-pituitary-adrenal axis reactivity to psychological stress and memory in middle-aged women: High responders exhibit enhanced declarative memory performance. Psychoneuroendocrinology, 27, 843853.CrossRefGoogle ScholarPubMed
Dos Santos, A. T., Leyendecker, D. M. D., Costa, A. L. S., & de Souza-Talarico, J. N. (2018). Relationship between cortisol reactivity to psychosocial stress and declarative memory decline during aging: Impact of age and sex. Geriatr Gerontol Int, 18, 169176. doi:10.1111/ggi.13139CrossRefGoogle ScholarPubMed
Espin, L., Almela, M., Hidalgo, V., Villada, C., Salvador, A., & Gomez-Amor, J. (2013). Acute pre-learning stress and declarative memory: Impact of sex, cortisol response and menstrual cycle phase. Horm Behav, 63, 759765. doi:10.1016/j.yhbeh.2013.03.013CrossRefGoogle ScholarPubMed
Gomez, R. G., Fleming, S. H., Keller, J., Flores, B., Kenna, H., DeBattista, C., & Schatzberg, A. F. (2006). The neuropsychological profile of psychotic major depression and its relation to cortisol. Biological Psychiatry, 60, 472478.CrossRefGoogle Scholar
Hedges, D. W., & Woon, F. L. (2011). Early-life stress and cognitive outcome. Psychopharmacology (Berl), 214, 121130. doi:10.1007/s00213-010-2090-6CrossRefGoogle ScholarPubMed
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 135.CrossRefGoogle ScholarPubMed
Het, S., Rohleder, N., Schoofs, D., Kirschbaum, C., & Wolf, O. T. (2009). Neuroendocrine and psychometric evaluation of a placebo version of the ‘Trier Social Stress Test’. Psychoneuroendocrinology, 34, 10751086. doi:10.1016/j.psyneuen.2009.02.008CrossRefGoogle ScholarPubMed
Hidalgo, V., Almela, M., Villada, C., & Salvador, A. (2014). Acute stress impairs recall after interference in older people, but not in young people. Horm Behav, 65, 264272. doi:10.1016/j.yhbeh.2013.12.017CrossRefGoogle ScholarPubMed
Hidalgo, V., Villada, C., Almela, M., Espin, L., Gomez-Amor, J., & Salvador, A. (2012). Enhancing effects of acute psychosocial stress on priming of non-declarative memory in healthy young adults. Stress, 15, 329338. doi:10.3109/10253890.2011.624224CrossRefGoogle ScholarPubMed
Hinkelmann, K., Moritz, S., Botzenhardt, J., Riedesel, K., Wiedemann, K., Kellner, M., & Otte, C. (2009). Cognitive impairment in major depression: Association with salivary cortisol. Biological Psychiatry, 66, 879885.CrossRefGoogle ScholarPubMed
Hinkelmann, K., Muhtz, C., Dettenborn, L., Agorastos, A., Moritz, S., Wingenfeld, K., & Otte, C. (2013). Association between cortisol awakening response and memory function in major depression. Psychological Medicine, 43, 22552263.CrossRefGoogle ScholarPubMed
Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23(5), 477501. doi:10.1016/s0893-133x(00)00159-7CrossRefGoogle ScholarPubMed
Jiang, C., & Rau, P. P. (2017). Working memory performance impaired after exposure to acute social stress: The evidence comes from ERPs. Neurosci Lett, 658, 137141. doi:10.1016/j.neulet.2017.08.054CrossRefGoogle ScholarPubMed
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The ‘Trier Social Stress Test’--a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681. doi:10.1159/000119004CrossRefGoogle Scholar
Lee, R. S., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode Major Depressive Disorder. J Affect Disord, 140, 113124. doi:10.1016/j.jad.2011.10.023CrossRefGoogle ScholarPubMed
Lezak, M. D., Howieson, D. B., Loring, D. W., Hannay, J. H., & Fischer, J. S. (1995). Neuropsychological Assessment. New York: Oxford University Press.Google Scholar
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Acheson, A., Cohoon, A. J., & Vincent, A. S. (2013). Early life adversity contributes to impaired cognition and impulsive behavior: Studies from the Oklahoma Family Health Patterns Project. Alcohol Clin Exp Res, 37, 616623. doi:10.1111/acer.12016CrossRefGoogle ScholarPubMed
Luethi, M., Meier, B., & Sandi, C. (2008). Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men. Front Behav Neurosci, 2, 5. doi:10.3389/neuro.08.005.2008CrossRefGoogle ScholarPubMed
Luettgau, L., Schlagenhauf, F., & Sjoerds, Z. (2018). Acute and past subjective stress influence working memory and related neural substrates. Psychoneuroendocrinology, 96, 2534. doi:10.1016/j.psyneuen.2018.05.036CrossRefGoogle ScholarPubMed
Millan, M. J., Agid, Y., Brune, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., … Young, L. J. (2012). Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discoveries, 11, 141168. doi:10.1038/nrd3628.CrossRefGoogle ScholarPubMed
Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be sensitive to change. Br J Psychiatry, 134, 382389.CrossRefGoogle ScholarPubMed
O'Hara, R., Schroder, C. M., Mahadevan, R., Schatzberg, A. F., Lindley, S., Fox, S., … Hallmayer, J. F. (2007). Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: Association and interaction with cortisol. Molecular Psychiatry, 12, 544555.CrossRefGoogle ScholarPubMed
Olver, J. S., Pinney, M., Maruff, P., & Norman, T. R. (2015). Impairments of spatial working memory and attention following acute psychosocial stress. Stress Health, 31, 115123. doi:10.1002/smi.2533CrossRefGoogle ScholarPubMed
Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., … Schatzberg, A. F. (2016). Major depressive disorder. Nat Rev Dis Primers, 2, 16065. doi:10.1038/nrdp.2016.65CrossRefGoogle ScholarPubMed
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends Neurosci, 31, 464468. doi:10.1016/j.tins.2008.06.006CrossRefGoogle ScholarPubMed
Parker, K. J., Schatzberg, A. F., & Lyons, D. M. (2003). Neuroendocrine aspects of hypercortisolism in major depression. Horm Behav, 43, 6066.CrossRefGoogle ScholarPubMed
Pechtel, P., & Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology (Berl), 214, 5570. doi:10.1007/s00213-010-2009-2CrossRefGoogle ScholarPubMed
Pesonen, A. K., Eriksson, J. G., Heinonen, K., Kajantie, E., Tuovinen, S., Alastalo, H., … Raikkonen, K. (2013). Cognitive ability and decline after early life stress exposure. Neurobiol Aging, 34, 16741679. doi:10.1016/j.neurobiolaging.2012.12.012CrossRefGoogle ScholarPubMed
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28, 916931.CrossRefGoogle ScholarPubMed
Reitan, R. M. (1992). Trail Making Test: Manual of administration and scoring. Tucson, AZ: Reitan Neuropsychology Laboratory.Google Scholar
Roca, M., Vives, M., Lopez-Navarro, E., Garcia-Campayo, J., & Gili, M. (2015). Cognitive impairments and depression: A critical review. Actas Esp Psiquiatr, 43, 187193.Google ScholarPubMed
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychol Med, 44, 20292040. doi:10.1017/s0033291713002535CrossRefGoogle ScholarPubMed
Saleh, A., Potter, G. G., McQuoid, D. R., Boyd, B., Turner, R., MacFall, J. R., & Taylor, W. D. (2017). Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med, 47, 171181. doi:10.1017/s0033291716002403CrossRefGoogle ScholarPubMed
Sanchez-Cubillo, I., Perianez, J. A., Adrover-Roig, D., Rodriguez-Sanchez, J. M., Rios-Lago, M., Tirapu, J., & Barcelo, F. (2009). Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc, 15, 438450. doi:10.1017/s1355617709090626CrossRefGoogle ScholarPubMed
Schlosser, N., Mensebach, C., Rullkotter, N., Schaffrath, C., Driessen, M., Beblo, T., & Wingenfeld, K. (2011). Selective attention in depression: Influence of emotionality and personal relevance. Journal of Nervous and Mental Disorders, 199, 696702.CrossRefGoogle ScholarPubMed
Schlosser, N., Wolf, O. T., Fernando, S. C., Riedesel, K., Otte, C., Muhtz, C., … Wingenfeld, K. (2010). Effects of acute cortisol administration on autobiographical memory in patients with major depression and healthy controls. Psychoneuroendocrinology, 35, 316-320. doi:10.1016/j.psyneuen.2009.06.015CrossRefGoogle ScholarPubMed
Schlosser, N., Wolf, O. T., Fernando, S. C., Terfehr, K., Otte, C., Spitzer, C., … Wingenfeld, K. (2013). Effects of acute cortisol administration on response inhibition in patients with major depression and healthy controls. Psychiatry Res, 209, 439446. doi:10.1016/j.psychres.2012.12.019CrossRefGoogle ScholarPubMed
Schoofs, D., Pabst, S., Brand, M., & Wolf, O. T. (2013). Working memory is differentially affected by stress in men and women. Behav Brain Res, 241, 144153. doi:10.1016/j.bbr.2012.12.004CrossRefGoogle ScholarPubMed
Schoofs, D., Preuss, D., & Wolf, O. T. (2008). Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology, 33, 643653. doi:10.1016/j.psyneuen.2008.02.004CrossRefGoogle Scholar
Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci Biobehav Rev, 68, 651668. doi:10.1016/j.neubiorev.2016.06.038CrossRefGoogle ScholarPubMed
Terfehr, K., Wolf, O. T., Schlosser, N., Fernando, S. C., Otte, C., Muhtz, C., … Wingenfeld, K. (2011a). Effects of acute hydrocortisone administration on declarative memory in patients with major depressive disorder: A placebo-controlled, double-blind crossover study. J Clin Psychiatry, 72, 16441650. doi:10.4088/JCP.10m06240CrossRefGoogle Scholar
Terfehr, K., Wolf, O. T., Schlosser, N., Fernando, S. C., Otte, C., Muhtz, C., … Wingenfeld, K. (2011b). Hydrocortisone impairs working memory in healthy humans, but not in patients with major depressive disorder. Psychopharmacology (Berl), 215, 7179. doi:10.1007/s00213-010-2117-zCrossRefGoogle Scholar
Tewes, U. (1991). HAWIE-R: Hamburg–Wechsler Intelligenztest für Erwachsene; Handbuch und Testanweisung. Bern: Bern: Huber-Verlag.Google Scholar
Vrshek-Schallhorn, S., Velkoff, E. A., & Zinbarg, R. E. (2018). Trait rumination and response to negative evaluative lab-induced stress: Neuroendocrine, affective, and cognitive outcomes. Cogn Emot, 114. doi:10.1080/02699931.2018.1459486Google ScholarPubMed
Waters, R. P., Rivalan, M., Bangasser, D. A., Deussing, J. M., Ising, M., Wood, S. K., … Summers, C. H. (2015). Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev, 58, 6378. doi:10.1016/j.neubiorev.2015.07.011CrossRefGoogle ScholarPubMed
Webster, M. J., Knable, M. B., O'Grady, J., Orthmann, J., & Weickert, C. S. (2002). Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry, 7, 985994, 924. doi:10.1038/sj.mp.4001139CrossRefGoogle ScholarPubMed
Williams, J. B., & Kobak, K. A. (2008). Development and reliability of a structured interview guide for the Montgomery Asberg Depression Rating Scale (SIGMA). Br J Psychiatry, 192, 5258. doi:10.1192/bjp.bp.106.032532CrossRefGoogle Scholar
Wingenfeld, K., Driessen, M., Mensebach, C., Rullkoetter, N., Schaffrath, C., Spitzer, C., … & Heim, C. (2011). Die deutsche Version des “Early Trauma Inventory” (ETI)—Erste psychometrische Charakterisierung eines Interviews zur Erfassung traumatischer Lebensereignisse in der Kindheit und Jugend. Diagnostica, 57, 2738. doi:10.1026/0012-1924/a000036CrossRefGoogle Scholar
Wingenfeld, K., Driessen, M., Terfehr, K., Schlosser, N., Fernando, S. C., Otte, C., … Wolf, O. T. (2012). Cortisol has enhancing, rather than impairing effects on memory retrieval in PTSD. Psychoneuroendocrinology, 37, 10481056. doi:10.1016/j.psyneuen.2011.12.002CrossRefGoogle ScholarPubMed
Wingenfeld, K., Kuehl, L. K., Boeker, A., Schultebraucks, K., Ritter, K., Hellmann-Regen, J., … Spitzer, C. (2017). Stress reactivity and its effects on subsequent food intake in depressed and healthy women with and without adverse childhood experiences. Psychoneuroendocrinology, 80, 122130. doi:10.1016/j.psyneuen.2017.03.014CrossRefGoogle ScholarPubMed
Wingenfeld, K., Spitzer, C., Mensebach, C., Grabe, H. J., Hill, A., Gast, U., … Driessen, M. (2010). [The German version of the Childhood Trauma Questionnaire (CTQ): Preliminary psychometric properties]. Psychother Psychosom Med Psychol, 60, 442450. doi:10.1055/s-0030-1247564CrossRefGoogle Scholar
Wolf, O. T., Schommer, N. C., Hellhammer, D. H., McEwen, B. S., & Kirschbaum, C. (2001). The relationship between stress induced cortisol levels and memory differs between men and women. Psychoneuroendocrinology, 26, 711720.CrossRefGoogle ScholarPubMed
Zandara, M., Garcia-Lluch, M., Pulopulos, M. M., Hidalgo, V., Villada, C., & Salvador, A. (2016). Acute stress and working memory: The role of sex and cognitive stress appraisal. Physiol Behav, 164(Pt A), 336344. doi:10.1016/j.physbeh.2016.06.022CrossRefGoogle ScholarPubMed
Zorn, J. V., Schur, R. R., Boks, M. P., Kahn, R. S., Joels, M., & Vinkers, C. H. (2017). Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology, 77, 2536. doi:10.1016/j.psyneuen.2016.11.036CrossRefGoogle ScholarPubMed