Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-d8fc5 Total loading time: 0.282 Render date: 2021-09-19T18:15:52.534Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A chemical–mineralogical classification of common plutonic rocks and associations

Published online by Cambridge University Press:  03 November 2011

F. Debon
Affiliation:
Centre de Recherches Pétrographiques et Géochimiques, BP. 20, 54501 Vandoeuvre-lès-Nancy, France.
P. Le Fort
Affiliation:
Centre de Recherches Pétrographiques et Géochimiques, BP. 20, 54501 Vandoeuvre-lès-Nancy, France.

Abstract

A classification is proposed, based mainly on major element analytical data plotted in a coherent set of three simple chemical-mineralogical diagrams. The procedure follows two complementary steps at two different levels. The first is concerned with the individual sample: the sample is given a name (e.g. granite, adamellite, granodiorite) and its chemical and mineralogical characteristics are determined. The second one is more important: it aims at defining the type of magmatic association (or series) to which the studied sample or group of samples belongs. Three main types of association are distinguished: cafemic (from source-material mainly or completely mantle-derived), aluminous (mainly or completely derived by anatexis of continental crust), and alumino-cafemic (intermediate between the other two types). Subtypes are then distinguished among the cafemic and alumino-cafemic associations: calc-alkaline (or granodioritic), subalkaline (or monzonitic), alkaline (and peralkaline), tholeiitic (or gabbroic-trondhjemitic), etc. In the same way, numerous subtypes and variants are also distinguished among the aluminous associations using a set of complementary criteria such as quartz content, colour index, alkali ratio, quartz–alkalies relationships and alumina index.

Although involving a new approach using partly new criteria, this classification is consistent with most of the divisions used in previous typologies. The method may also be used in the classification of the volcanic equivalents of common plutonic rocks.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arth, J. G., Barker, F., Peterman, Z. E. & Friedman, I. 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J PETROL 19, 289316.CrossRefGoogle Scholar
Barker, F. 1979. Trondhjemite: definition, environment and hypotheses of origin. In Barker, F. (ed.) Trondhjemites, darefs and related rocks, 112. Amsterdam: Elsevier.Google Scholar
Barker, F., Miliard, H. T. & Lipman, P. W. 1979. Four low-K siliceous rocks of the western U.S.A. In Barker, F. (ed.) Trondhjemites, darefs and related rocks, 415–33. Amsterdam: Elsevier.CrossRefGoogle Scholar
Barrière, M. 1972. Sur la distinction des granites hypoalumineux, alumineux et hyperalumineux. C R ACAD SCI PARIS 274D, 2416–8.Google Scholar
Barrière, M. 1977. Le complexe de Ploumanac'h. Massif Armoricain. Essai sur la mise en place et l'évolution péirologique d'une association plutonique subalcaline tardi-orogénique. Thèse Sci., Brest, Univ.Google Scholar
Barrière, M. 1980. Les granitoïdes paléozoïques armoricains. In Autran, A. & Dercourt, J. (coords) Géologie de la France, 5663. MEM BUR RECH GEOL MIN 107.Google Scholar
Bateman, P. C. & Nokleberg, W. J. 1978. Solidification of the Mount Givens Granodiorite, Sierra Nevada, California. J GEOL 86, 563–79.CrossRefGoogle Scholar
Bonin, B. 1977. Les complexes granitiques subvolcaniques de Corse: caractéristiques, signification et origine. BULL SOC GEOL FR 19, 865–71.CrossRefGoogle Scholar
Bonin, B. 1980. Les complexes acides alcalins continentaux: l'exemple de la Corse. Thèse Sci., Paris, Univ. P. et M. Curie.Google Scholar
Cawthorn, R. G. & Brown, P. A. 1976. A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation. J GEOL 84, 467–76.CrossRefGoogle Scholar
Cawthorn, R. G., Strong, D. F. & Brown, P. A. 1976. Origin of corundum-normative intrusive and extrusive calc-alkaline magmas. NATURE 259, 102–4.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. PAC GEOL 8, 173–4.Google Scholar
Clarke, D. B. 1981. The mineralogy of peraluminous granites: a review. CAN MINERAL 19, 317.Google Scholar
Couturié, J. P. 1977. Le massif granitique de la Margeride (Massif Central français). ANN SCI UNIV CLERMONT 62.Google Scholar
Debon, F. 1975. Les massifs granitoïdes à structure concentrique de Cauterets-Panticosa (Pyrénées occidentales) et leurs enclaves. Une étude pétrographique et géochimique. MEM SCI DE LA TERRE 33.Google Scholar
Debon, F. 1980. Genesis of the three concentrically-zoned granitoid plutons of Cauterets-Panticosa (French and Spanish western Pyrenees). GEOL RUNDSCH 69, 107–30.CrossRefGoogle Scholar
Debon, F., Le Fort, P. & Sonet, J. 1980. Typologie chimique et chronologie des roches plutoniques d'Afghanistan. REUN ANNU SCI TERRE 8, 122.Google Scholar
Debon, F., Le Fort, P. & Sonet, J. 1981. Granitoid belts West and South of Tibet. About their geochemical trends and Rb–Sr isotopie studies. In Liu, D. S. (ed.) Proceedings of Symposium on Qinghai-Xizang (Tibet) Plateau, (Beijing, China). Geological and ecological studies of Qinghai-Xizang Plateau, 1, 395405. Beijing: Science Press.Google Scholar
Debon, F., Le Fort, P. & Sonet, J. 1982. Chemical-mineralogical typology, chronology and geodynamic setting of the Western Hindu Kush–Badakhshan plutonic belt (Afghanistan). In Shams, F. A. (ed.) Granites of Himalaya, Karakorum and Hindu Kush. Lahore: Punjab Univ. (in press).Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1963. Rock-forming minerals 4. London: Longmans.Google Scholar
Didier, J. & Lameyre, J. 1972. Répartition géologique et signification des granites rouges. C R ACAD SCI PARIS 274D, 1135–8.Google Scholar
Gill, J. B. 1970. Geochemistry of Viti Levu, Fiji, and its evolution as an island arc. CONTRIB MINERAL PETROL 27, 179203.CrossRefGoogle Scholar
Grandclaude, P., Marchal, M. & La Roche, H. de 1976. Les fichiers géochimiques du Centre de Recherches Pétrographiques et Géochimiques: leur contenu et les modalités de leur utilisation comme banques de données. IND MINER 58, 457–63.Google Scholar
Green, T. H. & Ringwood, A. E. 1968. Genesis of the calc-alkaline igneous rock suite. CONTRIB MINERAL PETROL 18, 105–62.CrossRefGoogle Scholar
Harker, A. 1909. The natural history of igneous rocks. New York: Macmillan.Google Scholar
Hine, R., Williams, I. S., Chappell, B. W. & White, A. J. R. 1978. Contrasts between I- and S-type granitoids of the Kosciusko Batholith. J GEOL SOC AUST 25, 219–34.CrossRefGoogle Scholar
Holmes, A. 1921. Petrographic methods and calculation with some examples of results achieved. London: Murby.Google Scholar
Hutchison, C. S. 1975. The norm, its variations, their calculation and relationships. BULL SUISSE MINERAL PETROGR 55, 243–56.Google Scholar
Ishihara, S. 1977. The magnetite-series and ilmenite-series granitic rocks. MIN GEOL 27, 293305.Google Scholar
Jakeš, P. & White, A. J. R. 1972. Major and trace element abundances in volcanic rocks of orogenic areas. BULL GEOL SOC AM 83, 2940.CrossRefGoogle Scholar
Kuno, H. 1968. Differentiation of basalt magmas. In Hess, H. H. & Poldervaart, A. (eds) Basalts 2, 623–88. New York: Interscience.Google Scholar
Lacroix, A. 1933. Classification des roches éruptives. Nancy: Berger-Levrault.Google Scholar
Lameyre, J. 1980. Les magmas granitiques: leurs comportements, leurs associations et leurs sources. MEM HORS SER SOC GEOL FR 10, 5162.Google Scholar
La Roche, H. de 1964. Sur l'expression graphique des relations entre la composition chimique et la composition minéralogique quantitative des roches cristallines. Présentation d'un diagramme destiné à l'étude chimico-minéralogique des massifs granitiques ou grano-dioritiques. Application aux Vosges cristallines. SCI DE LA TERRE 9, 293337.Google Scholar
La Roche, H. de 1966. Sur l'usage du concept d'association minérale dans l'étude chimique des roches: modèles chimiques, statistiques, représentations graphiques, classification chimico-minéralogique. C R ACAD SCI PARIS 262D, 1665–8.Google Scholar
La Roche, H. de 1972. Revue sommaire de quelques diagrammes chimico-minéralogiques pour l'étude des associations ignées ou sédimentaires et de leurs dérivés métamorphiques. SCI DE LA TERRE 17, 3146.Google Scholar
La Roche, H. de 1976. Sur la contribution des données chimiques à une systématique générale des roches ignées. Avec, en appendice, “A diagram for a chemical classification of igneous rocks referred to their mineral content”. SCI DE LA TERRE 21, 1735.Google Scholar
La Roche, H. de 1978. La chimie des roches présentée et interprétée d'après la structure de leur faciès minéral dans l'espace des variables chimiques: fonctions spécifiques et diagrammes qui s'en déduisent. Application aux roches ignées. CHEM GEOL 21, 6387.CrossRefGoogle Scholar
La Roche, H. de 1979a. Muscovitisation deutérique, caractère alumineux des leucogranites et classification des granites subsolvus. BULL SOC GEOL FR 21, 8793.CrossRefGoogle Scholar
La Roche, H. de 1979b. Quelques cas d'interactions et d'échanges entre formations acides et formations basiques dans les zones profondes. MEM SCI GEOL 53, 149–59.Google Scholar
La Roche, H. de 1980. Granites' chemistry through multicationic diagrams. SCI DE LA TERRE INF GEOL 13, 6588.Google Scholar
La Roche, H. de & Leterrier, J. 1973. Transposition du tétraèdre minéralogique de Yoder et Tilley dand un diagramme chimique de classification des roches basaltiques. C R ACAD SCI PARIS 276D, 3115–8.Google Scholar
La Roche, H. de, Leterrier, J., Grandclaude, P. & Marchal, M. 1980. A classification of volcanic and plutonie rocks using R 1R 2 diagram and major element analyses. Its relationships with current nomenclature. CHEM GEOL 29, 183210.CrossRefGoogle Scholar
La Roche, H. de, Stussi, J. M. & Chauris, L. 1980. Les granites à deux micas hercyniens français. Essais de cartographie et de corrélations géochimiques appuyés sur une banque de données. Implications pétrologiques et métallogéniques. SCI DE LA TERRE 24, 5121.Google Scholar
Le Fort, P. 1973a. Géologie du Haut–Dauphiné cristallin (Alpes françaises). Etude pétrologique et structurale de la partie occidentale. MEM SCI DE LA TERRE 25.Google Scholar
Le Fort, P. 1973b. Les leucogranites à tourmaline de l'Himalaya sur l'exemple du granite du Manaslu (Népal central). BULL SOC GEOL FR 15, 555–61.CrossRefGoogle Scholar
Le Fort, P. 1975. Le granite du Manaslu. In Bordet, P., Colchen, M. & Le Fort, P. (eds) Recherches géologiques dans l'Himalaya du Népal, région du Nyi-Shang, 4965. Paris: Cent. Natl. Rech. Sci.Google Scholar
Le Fort, P. 1981. Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement. J GEOPHYS RES RED SER 86, 10545–68.CrossRefGoogle Scholar
Le Fort, P., Debon, F. & Sonet, J. 1980. The “Lesser Himalayan” cordierite granite belt. Typology and age of the pluton of Manserah (Pakistan). GEOL BULL UNIV PESHAWAR 13, 5161.Google Scholar
Le Fort, P., Debon, F. & Sonet, J. 1982. The Lower Paleozoic “Lesser Himalayan” granitic belt: emphasis on the Simchar pluton of Central Nepal. In Shams, F. A. (ed.) Granites of Himalaya, Karakorum and Hindu Kush. Lahore: Punjab Univ. (in press).Google Scholar
Leterrier, J. 1972. Etude pétrographique et géochimique du massif granitique de Quérigut (Ariège). MEM SCI DE LA TERRE 23.Google Scholar
Leterrier, J. & Maury, R. C. 1978. Représentation graphique de la cristallisation fractionnée des séries volcaniques. Application aux séries alcalines. GEOL RUNDSCH 67, 943–52.Google Scholar
Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. AM J SCI 274, 321–55.CrossRefGoogle Scholar
Moine, B. 1974. Caractère de sédimentation et de métamorphisme des séries précambriennes épizonales à catazonales du centre de Madagascar (région d'Ambatofinandrahana). Approche structurale, pétrographique et spécialement géochimique. MEM SCI DE LA TERRE 31.Google Scholar
Mutschler, F. E., Rougon, D. J. & Lavin, O. R. 1976. PETROS, a data bank of major element chemical analyses of igneous rocks for research and teaching. COMPUT GEOSCI 2, 51–7.CrossRefGoogle Scholar
Orsini, J. B. 1976. Les granitoïdes hercyniens corso-sardes: mise en évidence de deux associations magmatiques. BULL SOC GEOL FR 18, 1203–6.CrossRefGoogle Scholar
Orsini, J. B. 1979. Existence de trois associations magmatiques dans les granitoïdes postviséen moyen (groupe des granodiorites-monzogranites) de la chaîne varisque française. C R ACAD SCI PARIS 289D, 981–4.Google Scholar
Orsini, J. B. 1980. Le batholite corso–sarde: anatomie d'un batholite hercynien. Composition. Structure. Organisation d'ensemble. Sa place dans la chaîne varisque française. Thèse Sci., Marseille, Univ. Saint Jérôme.Google Scholar
Pagel, M. & Leterrier, J. 1980. The subalkaline potassic magmatism of the Ballons massif (Southern Vosges, France): shoshonitic affinity. LITHOS 13, 110.CrossRefGoogle Scholar
Peacock, M. A. 1931. Classification of igneous rocks. J GEOL 39, 5467.CrossRefGoogle Scholar
Phelps, D. 1979. Petrology, geochemistry and origin of the Sparta quartz diorite-trondhjemite complex, Northeastern Oregon. In Barker, F. (ed.) Trondhjemites, darefs and related rocks, 547–79. Amsterdam: Elsevier.CrossRefGoogle Scholar
Pitcher, W. S. 1979. Comments on the geological environments of granites. In Atherton, M. P. & Tarney, J. (eds) Origin of granite batholiths. Geochemical evidence, 18. Orpington: Shiva.Google Scholar
Pupin, J. P. 1980. Zircon and granite petrology. CONTRIB MINERAL PETROL 73, 207–20.CrossRefGoogle Scholar
Pupin, J. P. 1981. A propos des granites potassiques. C R ACAD SCI PARIS 292 II, 405–8.Google Scholar
Renard, J. P. 1971. Etude pétrographique et géochimique des granites du district uranifère de Vendée. Liaisons entre l'évolution minéralogique et le comportement de l'uranium. Conséquences pour la prospection. MEM SCI DE LA TERRE 30.Google Scholar
Saavedra, J., La Roche, H. de, Leterrier, J.avec Pellitero, E. 1973. Essai de typologie géochimique de quelques granites à duex micas des Vosges moyennes. BULL SOC GEOL FR 15, 541–55.CrossRefGoogle Scholar
Shand, S. J. 1927. Eruptive rocks. Their genesis, composition, classification and their relation to ore-deposits. London: Murby.Google Scholar
Streckeisen, A. L. 1967. Classification and nomenclature of igneous rocks (final report of an inquiry). NEUES JAHRB MINERAL ABH 107, 144240.Google Scholar
Streckeisen, A. L. 1974. Classification and nomenclature of plutonie rocks. GEOL RUNDSCH 63, 773–86.CrossRefGoogle Scholar
Streckeisen, A. L. 1976a. To each plutonie rock its proper name. EARTH SCI REV 12, 133.CrossRefGoogle Scholar
Streckeisen, A. L. 1976b. Classification of the common igneous rocks by means of their chemical composition. NEUES JAHRB MINERAL MONATSH 1, 115.Google Scholar
Streckeisen, A. L. & Le Maǐtre, R. W. 1979. A chemical approximation to the modal Q A P F classification of the igneous rocks. NEUES JAHRB MINERAL ABH 136, 169206.Google Scholar
Stussi, J. M. 1970. Le volcanisme associé au Culm des Vosges méridionales: tendances évolutives générales et géochimie de l'uranium et du thorium. Thèse Sci., Nancy, Univ.Google Scholar
Stussi, J. M. 1977. Parallélisme des tendances évolutives des associations magmatiques effusive (Thann–Giromagny) et plutonique (Massif des Ballons) associées au Viséen des Vosges méridionales. REUN ANNU SCI TERRE 5, 438.Google Scholar
Stussi, J. M., Moreau, M. & La Roche, H. de 1981. Typologie chimique et cartographie régionale des granitoïdes varisques des zones uranifères françaises: relations avec les teneurs géochimiques en uranium et thorium. In Divljan, S., Dromnjak, M., Ivanović, D., Krstić, N., Luković, J., Milojević, M. & Vukašinović, S. (eds) Proceedings from the Section 13, theme 2.2 of the 26th International Geological Congress in Paris, 1980. Metallogenesis of uranium, 520. Beograd: Geoinstitut.Google Scholar
Takahashi, M., Aramaki, S. & Ishihara, S. 1980. Magnetite-series/Ilmenite-series vs. I-type/S-type granitoids. MIN GEOL SPEC ISSUE 8, 1328.Google Scholar
Upton, B. G. J., Thomas, J. E. & Macdonald, R. 1971. Chemical variation within three alkaline complexes in South Greenland. LITHOS 4, 163–84.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1982. Granitoid types and their distribution in the Lachlan fold belt, Southeastern Australia. In Roddick, J. C. (ed.) Circum-Pacific Plutonic Terranes, GEOL SOC AM SPEC PAP (in press).Google Scholar
423
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A chemical–mineralogical classification of common plutonic rocks and associations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A chemical–mineralogical classification of common plutonic rocks and associations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A chemical–mineralogical classification of common plutonic rocks and associations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *