Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qxxll Total loading time: 0.362 Render date: 2021-06-22T10:12:33.946Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England

Published online by Cambridge University Press:  15 August 2019

Abstract

The holotypic isolated maxilla of the early sphenacodontian Haptodus grandis from the Cisuralian of England is revisited. A unique character combination includes haptodontine-grade traits like less specialised teeth and a high number of precanines, but at the same time a shortened lacrimal that is separated from the naris, which is strongly diagnostic of Sphenacodontoidea. As the specimen cannot be assigned to any known taxon, the new taxon Hypselohaptodus grandis gen. nov. is proposed. Comparison with other sphenacodontians reveals a mosaic distribution of maxillary features, most significantly regarding the precanine region. Preliminary character histories preclude Hypselohaptodus from Sphenacodontidae, but suggest a haptodontine-grade or basal therapsid position. The latter hypothesis is substantiated by an ecological model of episodic wet phases in an overall trend of aridification throughout the Permian, to explain the rareness of non-sphenacodontid sphenacodontians in the fossil record. Also from the early Permian of England, an isolated dentary has previously been assigned to Ophiacodon, but can be shown to be either a sphenacodontian, possibly affiliated with Hypselohaptodus, or a robust, Stereorhachis-like ophiacodontid. The absence of Ophiacodon in the intramontaneous Permian basis of Europe is explained by a narrow environmental tolerance range requiring limnic connection with lowland basins.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Benson, R. B. J. 2012. Interrelationships of basal synapsids: cranial and postcranial morphological partitions suggest different topologies. Journal of Systematic Palaeontology 10, 601624.CrossRefGoogle Scholar
Berman, D. S., Reisz, R. R., Bolt, J. R. & Scott, D. 1995. The cranial anatomy and relationships of the synapsid Varanosaurus (Eupelycosauria: Ophiacodontidae) from the Early Permian of Texas and Oklahoma. Annals of the Carnegie Museum 64, 99133.Google Scholar
Berman, D. S., Reisz, R. R., Martens, T. & Henrici, A. C. 2001. A new species of Dimetrodon (Synapsida: Sphenacodontidae) from the Lower Permian of Germany records first occurrence of genus outside of North America. Canadian Journal of Earth Sciences 38, 803812.CrossRefGoogle Scholar
Berman, D. S., Henrici, A. C., Sumida, S. S. & Martens, T. 2004. New materials of Dimetrodon teutonis (Synapsida: Sphenacodontidae) from the Lower Permian of Germany. Annales of the Carnegie Museum 73, 4856.Google Scholar
Berman, D. S., Henrici, A. C., Sumida, S. S., Martens, T. & Pelletier, V. 2014. First European record of a Varanodontine (Synapsida: Varanopidae): member of a unique Early Permian upland paleoecosystem, Tambach Basin, Central Germany. In Kammerer, C. F., Angielczyk, K. D. & Fröbisch, J. (eds) Early evolutionary history of the Synapsida, 6986. New York: Springer.CrossRefGoogle Scholar
Brink, K. S. 2015. Phylogenetics and dental evolution in Sphenacodontidae (Synapsida). Unpublished PhD Thesis, University of Toronto, Canada. 216 pp.Google Scholar
Brink, K. S., LeBlanc, A. R. H. & Reisz, R. R. 2014. First record of plicidentine in Synapsida and patterns of tooth root shape change in Early Permian sphenacodontians. Naturwissenschaften 101, 883892.CrossRefGoogle Scholar
Brink, K. S., Maddin, H. C., Evans, D. C. & Reisz, R. R. 2015. Re-evaluation of the historic Canadian fossil Bathygnathus borealis from the Early Permian of Prince Edward Island. Canadian Journal of Earth Sciences 52, 11091120.CrossRefGoogle Scholar
Brink, K. S. & Reisz, R. R. 2014. Hidden dental diversity in the oldest terrestrial apex predator Dimetrodon. Nature Communications 5, 3269.CrossRefGoogle Scholar
Brinkman, D. & Eberth, D. A. 1986. The anatomy and relationships of Stereophallodon and Baldwinonus (Reptilia, Pelycosauria). Breviora 485, 134.Google Scholar
Brocklehurst, N., Dunne, E. M., Cashmore, D. D. & Fröbisch, J. 2018. Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea. Nature Communications 9, 5216.CrossRefGoogle Scholar
Brocklehurst, N. & Brink, K. S. 2017. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. FACETS 2, 6884.CrossRefGoogle Scholar
Campione, N. E. & Reisz, R. R. 2010. Varanops brevirostris (Eupelycosauria: Varanopidae) from the Lower Permian of Texas, with discussion of varanopid morphology and interrelationships. Journal of Vertebrate Paleontology 30, 724746.CrossRefGoogle Scholar
Case, E. C. 1907. Revision of the Pelycosauria of North America. Carnegie Institution of Washington Publications 55, 1176.Google Scholar
Currie, P. J. 1977. A new haptodontine sphenacodont (Reptilia: Pelycosauria) from the Upper Pennsylvanian of North America. Journal of Paleontology 51, 927942.Google Scholar
Currie, P. J. 1979. The osteology of haptodontine sphenacodonts (Reptilia: Pelycosauria). Palaeontographica Abteilung A 163, 130168.Google Scholar
Dunne, E. M., Close, R. A., Button, D. J., Brocklehurst, N., Cashmore, D. D., Lloyd, G. T. & Butler, R. 2018. Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse'. Proceedings of the Royal Society B 285, 18.CrossRefGoogle Scholar
Eberth, D. A. 1985. The skull of Sphenacodon ferocior, and comparisons with other sphenacodontines (Reptilia: Pelycosauria). New Mexico Bureau of Mines and Mineral Resources, Circular 190, 139.Google Scholar
Falconnet, J. 2013. Diversification initiale des amniotes: l'apport des amniotes Français. Unpublished PhD Thesis, Muséum national d'histoire naturelle, Paris, France. 336 pp.Google Scholar
Falconnet, J. 2015. The sphenacodontid synapsid Neosaurus cynodus, and related material, from the Permo-Carboniferous of France. Acta Palaeontologica Polonica 60, 169182.Google Scholar
Felice, R. N. & Angielczyk, K. D. 2014. Was ophiacodon (Synapsida, Eupelycosauria) a swimmer? A test using vertebral dimensions. In Kammerer, C. F., Angielczyk, K. D. & Fröbisch, J. (eds) Early evolutionary history of the synapsida, 2551. New York: Springer.CrossRefGoogle Scholar
Fritsch, A. 1889. Fauna der gaskohle und der kalksteine der permformation Böhmens. Volume . Prague: Frič, Řivnáč. 114 pp.Google Scholar
Fröbisch, J., Schoch, R. R., Müller, J., Schindler, T. & Schweiss, D. 2011. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar-Nahe Basin, Germany. Acta Palaeontologica Polonica 56, 113120.CrossRefGoogle Scholar
Gaudry, J. A. 1886. Sur un nouveau genre de Reptile trouvé dans le Permian d'Autun. Bulletin de la Société géologique de France 14, 430433.Google Scholar
Heyler, D. 1969. Vertébrés de l'Autunien de France. Cahiers de Paléontologie. Paris: Éditions du Centre National de la Recherche Scientifique. 259 pp.Google Scholar
Hmich, D., Schneider, J. W., Saber, H., Voigt, S. & Wartiti, M. 2006. New continental Carboniferous and Permian faunas of Morocco: implications for biostratigraphy, palaeobiogeography and palaeoclimate. In Lucas, S. G., Cassinis, G. & Schneider, J. W. (eds) Non-marine Permian biostratigraphy and biochronology, volume 265, 297324. London: Geological Society of London.Google Scholar
Ivakhnenko, M. F. 2003. Eotherapsids from the East European Placket (Late Permian). Paleontological Journal 37, S339–465.Google Scholar
Ivakhnenko, M. F. 2008. Cranial morphology and evolution of Permian dinomorpha (Eotherapsida) of Eastern Europe. Paleontological Journal 42, 859995.CrossRefGoogle Scholar
Kammerer, C. 2011. Systematics of the Anteosauria (Therapsida: Dinocephalia). Journal of Systematic Paleontology 9, 261304.CrossRefGoogle Scholar
King, G. M. 1988. Handbuch der Paläoherpetologie. Teil 17C, Anomodontia. Stuttgart: Gustav Fischer Verlag. 174 pp.Google Scholar
Lagnaoui, A., Voigt, S., Belahmira, A., Saber, H., Klein, H., Hminna, A. & Schneider, J. W. 2017. Late Carboniferous tetrapod footprints from the Souss Basin, Western High Atlas Mountains, Morocco. Ichnos 25, 8193.CrossRefGoogle Scholar
Langston, W. & Reisz, R. R. 1981. Aerosaurus wellesi, new species, a varanopseid mammal-like reptile (Synapsida: Pelycosauria) from the Lower Permian of New Mexico. Journal of Vertebrate Paleontology 1, 7396.CrossRefGoogle Scholar
Laurin, M. 1993. Anatomy and relationships of Haptodus garnettensis, a Pennsylvanian synapsid from Kansas. Journal of Vertebrate Paleontology 13, 200229.CrossRefGoogle Scholar
Laurin, M. 1994. Re-evaluation of Cutleria wilmarthi, an early Permian synapsid from Colorado. Journal of Vertebrate Paleontology 14, 134138.CrossRefGoogle Scholar
Lewis, G. E. & Vaughn, P. P. 1965. Early Permian vertebrates from the cutler formation of the Placerville Area, Colorado. Geological Survey Professional Paper 503, C1–50.Google Scholar
Lucas, S. G., Rinehart, L. F. & Celeskey, M. D. 2018. The oldest specialized tetrapod herbivore: a new eupelycosaur from the Permian of New Mexico. Palaeontologia Electronica , 142.Google Scholar
Mazierski, D. M. & Reisz, R. R. 2010. Description of a new specimen of Ianthasaurus hardestiorum (Eupelycosauria: Edaphosauridae) and a re-evaluation of edaphosaurid phylogeny. Canadian Journal of Earth Sciences 47, 901912.CrossRefGoogle Scholar
Old, R. A., Sumbler, M. G. & Ambrose, K. 1987. Geology of the country around Warwick: memoir for 1:50,000 geological sheet 184 (England and Wales). Memoir of the British Geological Survey. London: HMSO. 93 pp.Google Scholar
Osborn, H. F. 1903. On the primary division of the Reptilia into two sub-classes, Synapsida and Diapsida. Science 17, 275276.CrossRefGoogle Scholar
Pardo, J. D., Small, B. J., Milner, A. R. & Huttenlocker, A. K. 2019. Carboniferous–Permian climate change constrained early land vertebrate radiations. Nature Ecology & Evolution 3, 200206.CrossRefGoogle Scholar
Paton, R. L. 1974. Lower Permian pelycosaurs from the English Midlands. Palaeontology 17, 541552.Google Scholar
Paton, R. L. 1975. A Lower Permian temnospondylous amphibian from the English Midlands. Palaeontology 18, 831845.Google Scholar
Peabody, F. E. 1957. Pennsylvanian reptiles of Garnett, Kansas: Edaphosaurs. Journal of Paleontology 31, 947949.Google Scholar
Powell, J. H., Chisholm, J. I., McC Bridge, D., Rees, J. G., Glover, B. W. & Besly, B. M. 2000. Stratigraphical framework for Westphalian to Early Permian red-bed successions of the Pennine Basin. British Geological Survey Research Report RR/00/01. Keyworth, Great Britain. 28 pp.Google Scholar
Reisz, R. R. 1975. Pennsylvanian Pelycosaurs from Linton, Ohio and Nýřany, Czechoslovakia. Journal of Paleontology 49, 522527.Google Scholar
Reisz, R. R. 1986. Handbuch der Paläoherpetologie. Teil 17A, Pelycosauria. Stuttgart: Gustav Fischer Verlag. 102 pp.Google Scholar
Reisz, R. R., Heaton, M. J. & Pynn, B. R. 1982. Vertebrate fauna of Late Pennsylvanian Rock Lake Shale near Garnett, Kansas: Pelycosauria. Journal of Paleontology 56, 741750.Google Scholar
Reisz, R. R., Berman, D. S. & Scott, D. 1992. The cranial anatomy and relationships of Secodontosaurus, an unusual mammal-like reptile (Synapsida: Sphenacodontidae) from the early Permian of Texas. Zoological Journal of the Linnean Society 104, 127184.CrossRefGoogle Scholar
Romano, M., Citton, P., Maganuco, S., Sacchi, E., Caratelli, M., Ronchi, A. & Nicosia, U. 2018. New basal synapsid discovery at the Permian outcrop of Torre del Porticciolo (Alghero, Italy). Geological Journal 2018, 113.Google Scholar
Romer, A. S. & Price, L. I. 1940. Review of the Pelycosauria. Geological Society of America Special Papers 28, 1538.CrossRefGoogle Scholar
Roscher, M., Berner, U. & Schneider, J. W. 2008. A tool for the assessment of the paleo-distribution of source and reservoir rocks. OIL GAS European Magazine 3, 131137.Google Scholar
Roscher, M. & Schneider, J. W. 2006. Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. In Lucas, S. G., Cassinis, G. & Schneider, J. W. (eds) Non-marine Permian biostratigraphy and biochronology, volume 265, 95136. London: Geological Society of London.Google Scholar
Schneider, J. W. 1993. Environment, biotas and taphonomy of the lacustrine Niederhäslich Limestone, Döhlen Basin, Germany. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 453464.CrossRefGoogle Scholar
Shelton, C. D., Sander, P. M., Stein, K. & Winkelhorst, H. 2013. Long bone histology indicates sympatric species of Dimetrodon (lower Permian, Sphenacodontidae). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103, 120.Google Scholar
Sigogneau-Russell, D. 1989. Handbuch der Paläoherpetologie. Teil 17B, Theriodontia I. Stuttgart: Gustav Fischer Verlag. 127 pp.Google Scholar
Spielmann, J. A., Rinehart, L. F., Lucas, S. G., Berman, D. S., Henrici, A. C. & Harris, S. K. 2010. Redescription of the cranial anatomy of Sphenacodon ferox marsh (Eupelycosauria: Sphenacodontifae) from the Late Pennsylvanian-Early Permian of New Mexico. In Lucas, S. G., Schneider, J. W. & Spielmann, J. A. (eds) Carboniferous-Permian transition in Cañon del Cobre, northern New Mexico, volume 49, 159184. Albuquerque: New Mexico Museum of Natural History and Science Bulletin.Google Scholar
Spindler, F. 2013. The Niederhäslich tetrapod assemblage (Early Permian, Döhlen basin) from Germany – new insights to ecology, reptiliomorph diversity, and the biology of (basal Sphenacodontia). Abstract volume of the 73rd Annual Meeting of the Society of Vertebrate Paleontology. Los Angeles, CA. 218 pp.Google Scholar
Spindler, F. 2014. Reviewing the question of the oldest therapsid. Freiberger Forschungshefte, C 548, 17.Google Scholar
Spindler, F. 2015. The basal Sphenacodontia – systematic revision and evolutionary implications. PhD Thesis, Technische Universität Bergakademie Freiberg, Germany. 385 pp.Google Scholar
Spindler, F. 2016. Morphological description and taxonomic status of Palaeohatteria and Pantelosaurus (synapsida: Sphenacodontia). Freiberger Forschungshefte, C 550, 157.Google Scholar
Spindler, F., Scott, D. & Reisz, R. R. 2015. New information on the cranial and postcranial anatomy of the early synapsid Ianthodon schultzei (Sphenacomorpha: Sphenacodontia), and its evolutionary significance. Fossil Record 18, 1730.CrossRefGoogle Scholar
Spindler, F., Falconnet, J. & Fröbisch, J. 2016. Callibrachion and Datheosaurus, two historical and previously mistaken basal caseasaurian synapsids from Europe. Acta Palaeontologica Polonica 61, 597616.CrossRefGoogle Scholar
Spindler, F., Werneburg, R., Schneider, J. W., Luthardt, L., Annacker, V. & Rößler, R. 2018. First arboreal ‘pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ – Paläontologische Zeitschrift 92, 315364.CrossRefGoogle Scholar
Spindler, F., Voigt, S. & Fischer, J. 2019. Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationships to North American representatives. PalZ – Paläontologische Zeitschrift. DOI: 10.1007/s12542-019-00453-2.CrossRefGoogle Scholar
Štamberg, S. & Zajíc, J. 2008. Carboniferous and Permian faunas and their occurrence in the limnic basins of the Czech Republic. Hradec Králové: Muzeum východních Čech v Hradci Králové. 224 pp.Google Scholar
Sumida, S. S. & Berman, D. S. 1993. The Pelycosaurian (Amniota: Synapsida) assemblage from the late Pennsylvanian Sangre de Cristo Formation of central Colorado. Annals of the Carnegie Museum 62, 293310.Google Scholar
Vaughn, P. P. 1964. Vertebrates from the organ rock shale of the Cutler Group, Permian of Monument Valley and vicinity, Utah and Arizona. Journal of Paleontology 38, 567583.Google Scholar
Vaughn, P. P. 1969. Lower Permian vertebrates of the four corners and the midcontinent as indices of climatic differences. Proceedings of the North American Paleontological Convention, D, 388408.Google Scholar
Voigt, S., Fischer, J., Schindler, T., Wuttke, M., Spindler, F. & Rinehart, L. F. 2014. On a potential fossil hotspot for Pennsylvanian-Permian non-aquatic vertebrates in central Europe. Freiberger Forschungshefte, C 548, 3944.Google Scholar
von Huene, F. 1908. Neue und verkannte Pelycosaurier-Reste aus Europa. Centralblatt für Mineralogie, Geologie und Paläontologie 14, 431434.Google Scholar
Warrington, G., Barclay, W. J., Leveridge, B. E. & Waters, C. N. 2012. The global Devonian, Carboniferous and Permian correlation project: a review of the contribution from Great Britain. Geoscience in South-West England 13, 4751.Google Scholar
Watson, D. M. S. 1917. A sketch classification of the pre-Jurassic tetrapod vertebrates. Journal of Zoology 87, 167186.Google Scholar
Werneburg, R. 2007. Der ‘Manebacher Saurier' – ein neuer großer Eryopide (Onchiodon) aus dem Rotliegend (Unter-Perm) des Thüringer Waldes. Veröffentlichungen Naturhistorisches Museum Schleusingen 22, 340.Google Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *