Skip to main content
×
Home

Climate sensitivity

  • Roy Thompson (a1)
Abstract
ABSTRACT

Earth has been habitable through most of its history, but the anthropogenically mediated greenhouse effect, if sufficiently strong, can threaten Earth's long-standing equability. This paper's main aim is to determine the strength of the anthropogenic greenhouse effect (the climate sensitivity) from observational data and basic physics alone, without recourse to the parameterisations of earth-system models and their inevitable uncertainties. A key finding is that the sensitivity can be constrained by harmonising historical records of land and ocean temperatures with observations of potential climate-change drivers in a non-steady state, energy-balance equation via a least-squares optimisation. The global temperature increase, for a CO2 doubling, is found to lie (95 % confidence limits) between 3.0oC and 6.3oC, with a best estimate of +4oC. Under a business-as-usual scenario, which assumes that there will be no significant change in people's attitudes and priorities, Earth's surface temperature is forecast to rise by 7.9oC over the land, and by 3.6oC over the oceans, by the year 2100. Global temperature rise has slowed in the last decade, leading some to question climate predictions of substantial 21st-Century warming. A formal runs test, however, shows that the recent slowdown is part of the normal behaviour of the climate system.

Copyright
References
Hide All
Andrews T., Gregory J. M., Webb M. J. & Taylor K. E. 2012. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophysical Research Letters 39(9). doi: 10.1029/2012GL051607.
Andronova N. G. & Schlesinger M. E. 2001. Objective estimation of the probability density function for climate sensitivity. Journal of Geophysical Research: Atmospheres (1984–2012) 106(D19), 22605–11.
Ångström A. K. 1915. A study of the radiation of the atmosphere: based upon observations of the nocturnal radiation during expeditions to Algeria and to California. Smithsonian Miscellaneous Collections 65. Washington, D. C.: Smithsonian Institution.
Bond T. C., Doherty S. J., Fahey D. W., Forster P. M., Berntsen T., DeAngelo B. J., Flanner M. G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P. K., Sarofim M. C., Schultz M. G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S. K., Hopke P. K., Jacobson M. Z., Kaiser J. W., Klimont Z., Lohmann U., Schwarz J. P., Shindell D., Storelvmo T., Warren S. G. & Zender C. S. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118(11), 5380–552.
Boucher O. & Pham M. 2002. History of sulfate aerosol radiative forcings. Geophysical Research Letters 29(9), 22-122-4.
Budyko M. I. 1956. Teplovoi Balans Zemnoi Pverkhnosti. [.] Leningrad. [English translation by Stepanova N. A., US Weather Bureau, 1958.] 259 pp.
Callendar G. S. 1949. Can carbon dioxide influence climate? Weather 4(10), 310–14.
Charlson R. J., Schwartz S. E., Hales J. M., Cess R. D., Coakley J. J. Jr., Hansen J. E. & Hofmann D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255(5043), 423–30.
Eby M., Zickfeld K., Montenegro A., Archer D., Meissner K. J. & Weaver A. J. 2009. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. Journal of Climate 22(2), 501–11.
Efron B. & Tibshirani R. J. 1994. An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. Chapman & Hall/CRC Press. 456 pp.
Etheridge D. M., Steele L. P., Langenfelds R. L., Francey R. J., Barnola J. M. & Morgan V. I. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research: Atmospheres (1984–2012) 101(D2), 4115–28.
Feulner G., Rahmstorf S., Levermann A. & Volkwardt S. 2013. On the Origin of the Surface Air Temperature Difference between the Hemispheres in Earth's Present-Day Climate. Journal of Climate 26(18), 7136–50.
Flato G., Marotzke J., Abiodun B., Braconnot P., Chou S.C., Collins W., Cox P., Driouech F., Emori S., Eyring V., Forest C., Gleckler P., Guilyardi E., Jakob C., Kattsov V., Reason C. & Rummukainen M. 2013. Evaluation of Climate Models. In Stocker T. F., Qin D., Plattner G. -K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P. M. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 741866. Cambridge, UK & New York: Cambridge University Press.
Forster P. M., Andrews T., Good P., Gregory J. M., Jackson L. S. & Zelinka M. 2013. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. Journal of Geophysical Research: Atmospheres 118(3), 1139–50.
Forster P. M. & Gregory J. M. 2006. The climate sensitivity and its components diagnosed from Earth radiation budget data. Journal of Climate 19(1), 3952.
Foster G., Annan J. D., Schmidt G. A. & Mann M. E. 2008. Comment on “Heat capacity, time constant and sensitivity of Earth's climate system” by S. E. Schwartz. Journal of Geophysical Research 113, D15102. doi:10.1029/2007JD009373.
Gregory J. M., Ingram W. J., Palmer M. A., Jones G. S., Stott P. A., Thorpe R. B., Lowe J. A., Johns T. C. & Williams K. D. 2004. A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters 31(3), L03205, 14.
Haigh J. D. 2002. Radiative forcing of climate change. Weather 57(8), 278–83.
Hansen J., Lacis A., Rind D., Russell G., Stone P., Fung I., Ruedy R. & Lerner J. 1984. Climate sensitivity: Analysis of feedback mechanisms. In Hansen J. E. & Takahashi T. (eds) Climate Processes and Climate Sensitivity. AGU Geophysical Monograph 29 (Maurice Ewing Vol. 5), 130–63. Washington, D. C.: American Geophysical Union.
Hansen J., Sato M., Kharecha P. & Schuckmann K. V. 2011. Earth's energy imbalance and implications. Atmospheric Chemistry and Physics 11(24), 13421–49.
Hastie T. & Tibshirani R. 1986. Generalized additive models. Statistical Science 1(3), 297310.
Held I. M. 2013. Climate science: the cause of the pause. Nature 501(7467), 318–19.
IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. [Houghton J. T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Dai X., Maskell K. & Johnson C. A. (eds)]. Cambridge, UK & New York: Cambridge University Press. 881 pp.
Jones P. D., Wigley T. M. L. & Kelly P. M. 1982. Variations in surface air temperatures: Part 1. Northern Hemisphere, 1881–1980. Monthly Weather Review 110(2), 5970.
Joos F., Prentice I. C., Sitch S., Meyer R., Hooss G., Plattner G. K., Gerbe S. & Hasselmann K. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles 15(4), 891907.
Keeling C. D. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12, 200–03.
Knutti R., Kraehenmann S., Frame D. J. & Allen M. R. 2008. Comment on “Heat capacity, time constant, and sensitivity of Earth's climate system” by S. E. Schwartz. Journal of Geophysical Research: Atmospheres (1984–2012) 113(D15), D15103, 16.
Lambert F. H., Webb M. J. & Joshi M. M. 2011. The relationship between land–ocean surface temperature contrast and radiative forcing. Journal of Climate 24(13), 3239–56.
Lean J., Beer J. & Bradley R. 1995. Reconstruction of solar irradiance since 1610: implications for climate change. Geophysical Research Letters 22(23), 3195–98.
Manabe S. & Wetherald R. T. 1975. The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences 32(1), 315.
Masters T. 2014. Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models. Climate Dynamics 42(7–8), 2173–81.
Meehl G. A., Covey C., Taylor K. E., Delworth T., Stouffer R. J., Latif M., McAvaney B. & Mitchell J. F. 2007. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bulletin of the American Meteorological Society 88(9), 1383–94.
Meinshausen M., Smith S. J., Calvin K., Daniel J. S., Kainuma M. L. T., Lamarque J. F., Matsumoto K., Montzka S. A, Raper S. C. B., Riahi K., Thomson A., Velders G. J. M. & Van Vuuren D. P. P. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change 109(1-2), 213–41.
Mitchell J. F. B., Johns T. C., Gregory J. M. & Tett S. F. B. 1995. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376, 501–04.
Mohr K. F. 1837. Ansichten über die Natur der Wärme. [Views on the Nature of Heat.] Annalen der Pharmacie 24, 141–47.
Murphy D. M., Solomon S., Portmann R. W., Rosenlof K. H., Forster P. M. & Wong T. 2009. An observationally based energy balance for the Earth since 1950. Journal of Geophysical Research: Atmospheres (1984–2012) 114, D17107.
Myhre G., Myhre A. & Storda F. 2001. Historical evolution of radiative forcing of climate. Atmosphere Environment 35, 2361–73.
Myhre G., Shindell D., Bréon F. -M., Collins W., Fuglestvedt J., Huang J., Koch D., Lamarque J. -F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T. & Zhang H. 2013. Anthropogenic and Natural Radiative Forcing. In Stocker T. F., Qin D., Plattner G. -K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P. M. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 659740. Cambridge, UK & New York: Cambridge University Press.
Peters G. P., Andrew R. M., Boden T., Canadell J. G., Ciais P., Le Quéré C., Marland G., Raupach M. R. & Wilson C. 2013. The challenge to keep global warming below 2oC. Nature Climate Change 3(1), 46.
Pierrehumbert R. T. 2014. Short-lived climate pollution. Annual Review of Earth and Planetary Sciences 42(1), 341–79.
Pinheiro J. C. & Bates D. M. 2000. Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag.
Raymo M. E., Grant B., Horowitz M. & Rau G. H. 1996. Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Marine Micropaleontology 27(1–4), 313–26.
Roberts C. D., Palmer M. D., McNeall D., & Collins M. 2015. Quantifying the likelihood of a continued hiatus in global warming. Nature Climate Change 5, 337–42.
Schwartz S. E. 2007. Heat capacity, time constant and sensitivity of Earth's climate system. Journal of Geophysical Research 112, D24S05. doi:10.1029/2007JD008746.
Shindell D. T. 2014. Inhomogeneous forcing and transient climate sensitivity. Nature Climate Change 4, 274–77.
Stainforth D. A., Aina T., Christensen C., Collins M., Faull N., Frame D. J., Kettleborough J. A., Knight S., Martin A., Murphy J. M., Piani C., Sexton D., Smith L. A., Spicer R. A., Thorpe A. J. and Allen M. R. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024). 403–06.
Stevenson D. 2015. Atmospheric chemistry: Climate's chemical sensitivity. Nature Climate Change 5, 2122.
Taylor K. E., Stouffer R. J. & Meehl G. A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93(4), 485–98.
Tol R. S. & De Vos A. F. 1998. A Bayesian statistical analysis of the enhanced greenhouse effect. Climatic Change 38(1), 87112.
Urban N. M. & Keller K. 2009. Complementary observational constraints on climate sensitivity. Geophysical Research Letters 36(4), L04708. doi:10.1029/2008GL036457
Wigley T. M. & Santer B. D. 2013. A probabilistic quantification of the anthropogenic component of twentieth century global warming. Climate Dynamics 40(5–6), 1087–102.
Zhang Y. G., Pagani M., Liu Z., Bohaty S. M. & DeConto R. 2013. A 40-million-year history of atmospheric CO2 . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, 20130096.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Earth and Environmental Science Transactions of The Royal Society of Edinburgh
  • ISSN: 1755-6910
  • EISSN: 1755-6929
  • URL: /core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 48 *
Loading metrics...

Abstract views

Total abstract views: 278 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.