Skip to main content Accesibility Help

Combined effects of rainfall regime and plot length on runoff and soil loss in the Loess Plateau of China

  • Jianbo LIU (a1) (a2), Guangyao GAO (a1), Shuai WANG (a1) and Bojie FU (a1)

The purpose of this paper was to study the interaction effects of rainfall regime and slope length on runoff and soil loss under different land uses. Event runoff and soil loss in forest, shrub and grass were measured in plots with lengths of 5, 9 and 13m in the Loess Plateau from 2008 to 2016. A total of 59 erosive rainfall events were recorded and classified into three rainfall regimes. Firstly, the results showed that the runoff coefficient was grass>shrub>forest, and soil loss was grass>forest>shrub, but the differences between forest and shrub in runoff and between grass and forest in soil loss did not reach significant levels. Secondly, rainfall regimes had an important effect on runoff and soil loss under different land uses. The lowest runoff coefficients and the highest soil loss in regime 2 were found in shrub and forest land, respectively, which differed from that of regime 1. In total, rainfall regime 1 had the highest runoff coefficient of 0.84–2.06%, followed by regime 3 with 0.33–0.88% and regime 2 with 0.04–0.06%. Soil loss in forest and grass land had a different order of regime 3>regime 1>regime 2. Thirdly, both the runoff coefficient and soil loss decreased with increasing plot length, while the effect of slope length on runoff/soil loss were influenced by land use type and rainfall regimes.

Corresponding author
*Corresponding author
Hide All
Allen, S. T., Brooks, J. R., Keim, R. F., Bond, B. J. & McDonnell, J. J. 2014. The role of pre- event canopy storage in throughfall and stemflow by using isotopic tracers. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology 7, 858868.
Angel, J. R., Palecki, M. A. & Hollinger, S. E. 2005. Storm precipitation in the United States. Part ii: soil erosion characteristics. Journal of Applied Meteorology 44, 947959.
Boardman, J. 2015. Extreme rainfall and its impact on cultivated landscapes with particular reference to Britain. Earth Surface Processes and Landforms 40, 21212130.
Bochet, E., Rubio, J. L. & Poesen, J. 1998. Relative efficiency of three representative matorral species in reducing water erosion at the microscale in a semi-arid climate (Valencia, Spain). Geomorphology 23, 139150.
Boix-Fayos, C., Martinez-Mena, M., Arnau-Rosalen, E., Calvo-Cases, A., Castillo, V. & Albaladejo, J. 2006. Measuring soil erosion by field plots: understanding the sources of variation. Earth-Science Reviews 78, 267285.
Calder, I. R. 2001. Canopy processes: implications for transpiration, interception and splash induced erosion, ultimately for forest management and water resources. Plant Ecology 153, 203214.
Cammeraat, E. L. H. 2004. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agriculture Ecosystems & Environment 104, 317332.
Chaplot, V. A. M. & Le Bissonnais, Y. 2003. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil Science Society of America Journal 67, 844851.
Chen, X. A., Cai, Q. G., Zhang, L. C., Zheng, M., Qi, J. Y. & Li, J. L. 2011. Impact of slope length on soil erosion under different rainfall intensity in a hilly loess region on the Loess Plateau. Journal of Soil Science 42, 721725.
Cheng, J. D., Lin, L. L. & Lu, H. S. 2002. Influences of forests on water flows from headwater watersheds in Taiwan. Forest Ecology and Management 165, 1128.
Chirino, E., Bonet, A., Bellot, J. & Sanchez, J. R. 2006. Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in south eastern Spain. Catena 65, 1929.
Crockford, R. H. & Richardson, D. P. 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes 14, 29032920.
Dunkerley, D. 2010. How do the rain rates of sub-event intervals such as the maximum 5-and 15-min rates (i-5 or i-30) relate to the properties of the enclosing rainfall event? Hydrological Processes 24, 24252439.
Elwell, H. A. & Stocking, M. A. 1976. Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma 15, 6170.
Fang, H. Y., Cai, Q. G., Chen, H. & Li, Q. Y. 2008. Effect of rainfall regime and slope on runoff in a gullied loess region on the Loess Plateau in China. Environmental Management 42, 402411.
Fang, N. F., Shi, Z. H., Li, L., Guo, Z. L., Liu, Q. J. & Ai, L. 2012. The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed. Catena 99, 18.
Feng, X. M., Sun, G., Fu, B. J., Su, C. H., Liu, Y. & Lamparski, H. 2012. Regional effects of vegetation restoration on water yield across the Loess Plateau, China. Hydrology and Earth System Sciences 16, 26172628.
Findeling, A., Ruy, S. & Scopel, E. 2003. Modeling the effects of a partial residue mulch on runoff using a physically based approach. Journal of Hydrology 275, 4966.
Frauenfeld, B. & Truman, C. 2004. Variable rainfall intensity effects on runoff and interrill erosion from two coastal plain ultisols in Georgia. Soil Science 169, 143154.
Fu, B. J., Liu, Y., Lu, Y. H., He, C. S., Zeng, Y. & Wu, B. F. 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity 8, 284293.
Fusun, S., Jinniu, W., Tao, L., Yan, W., Haixia, G. & Ning, W. 2013. Effects of different types of vegetation recovery on runoff and soil erosion on a Wenchuan earthquake-triggered landslide, China. Journal of Soil and Water Conservation 68, 138145.
Gao, G. Y., Fu, B. J., Lu, Y. H., Liu, Y., Wang, S. & Zhou, J. 2012. Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China. Hydrology and Earth System Sciences 16, 23472364.
Ghahramani, A. & Ishikawa, Y. 2013. Water flux and sediment transport within a forested landscape: the role of connectivity, subsurface flow, and slope length scale on transport mechanism. Hydrological Processes 27, 40914102.
González-Hidalgo, J. C., Peña-Monné, J. L. & de Luis, M. 2007. A review of daily soil erosion in western Mediterranean areas. Catena 71, 193199.
Gyssels, G., Poesen, J., Bochet, E. & Li, Y. 2005. Impact of plant roots on the resistance of soils to erosion by water: a review. Progress in Physical Geography 29, 189217.
Hong, N. 2003. Products and servicing solution teaching book for SPSS of Windows Statistical, 300311. Beijing: Tsinghua University Press and Communication University Press.
Kang, S. Z., Zhang, L., Song, X. Y., Zhang, S. H., Liu, X. Z., Liang, Y. L. & Zheng, S. Q. 2001. Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China. Hydrological Processes 15, 977988.
Kinnell, P. I. A. 2005. Why the universal soil loss equation and the revised version of it do not predict event erosion well. Hydrological Processes 19, 851854.
Kinnell, P. I. A. 2007. Runoff dependent erosivity and slope length factors suitable for modelling annual erosion using the universal soil loss equation. Hydrological Processes 21, 26812689.
Li, X., Niu, J. & Xie, B. 2014. The effect of leaf litter cover on surface runoff and soil erosion in northern China. Plos One 9, 115.
Li, Y., Poesen, J., Yang, J. C., Fu, B. & Zhang, J. H. 2003. Evaluating gully erosion using cs-137 and pb-210/cs-137 ratio in a reservoir catchment. Soil & Tillage Research 69, 107115.
Liu, B. Y., Nearing, M. A., Shi, P. J. & Jia, Z. W. 2000. Slope length effects on soil loss for steep slopes. Soil Science Society of America Journal 64, 17591763.
Liu, Y., Fu, B. J., Lu, Y. H., Wang, Z. & Gao, G. Y. 2012. Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China. Geomorphology 138, 404414.
Liu, Y. J., Yang, J., Hu, J. M., Tang, C. J. & Zheng, H. J. 2016. Characteristics of the surface-subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, southern China. Journal of Hydrology 539, 457467.
Lu, Y. H., Fu, B. J., Feng, X. M., Zeng, Y., Liu, Y., Chang, R. Y., Sun, G. & Wu, B. F. 2012. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. Plos One 7, 110.
Mayor, A. G., Bautista, S. & Bellot, J. 2011. Scale-dependent variation in runoff and sediment yield in a semiarid Mediterranean catchment. Journal of Hydrology 397, 128135.
Millward, A. A. & Mersey, J. E. 1999. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 38, 109129.
Nunes, A. N., De Almeida, A. C. & Coelho, C. O. 2011. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Applied Geography 31, 687699.
Pannkuk, C. D. & Robichaud, P. R. 2003. Effectiveness of needle cast at reducing erosion after forest fires. Water Resources Research 39, 19.
Parsons, A. J., Brazier, R. E., Wainwright, J. & Powell, D. M. 2006. Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms 31, 13841393.
Parsons, A. J. & Stone, P. M. 2006. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena 67, 6878.
Peng, T. & Wang, S. J. 2012. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 90, 5362.
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R. & Blair, R. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267, 11171123.
Puigdefabregas, J., Sole, A., Gutierrez, L., del Barrio, G. & Boer, M. 1999. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in southeast Spain. Earth-Science Reviews 48, 3970.
Quinton, J. N., Edwards, G. M. & Morgan, R. P. C. 1997. The influence of vegetation species and plant properties on runoff and soil erosion: results from a rainfall simulation study in south east Spain. Soil Use and Management 13, 143148.
Ramos, M. C. & Martinez-Casasnovas, J. A. 2009. Impacts of annual precipitation extremes on soil and nutrient losses in vineyards of NE Spain. Hydrological Processes 23, 224235.
Ran, Q., Su, D., Li, P. & He, Z. 2012. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. Journal of Hydrology 424–25, 99111.
Sadeghi, S. H. R., Seghaleh, M. B. & Rangavar, A. S. 2013. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena 102, 5561.
Shi, H. & Shao, M. G. 2000. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments 45, 920.
Smets, T., Poesen, J. & Bochet, E. 2008. Impact of plot length on the effectiveness of different soil-surface covers in reducing runoff and soil loss by water. Progress in Physical Geography 32, 654677.
Sun, L., Zhang, G. H., Wang, B. & Luan, L. L. 2017. Soil erosion resistance of black locust land with different ages of returning farmland on Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering 33, 191197. [In Chinese.]
Wei, W., Chen, L. D., Fu, B. J., Huang, Z. L., Wu, D. P. & Gui, L. D. 2007. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology 335, 247258.
Wei, W., Chen, L. D., Fu, B. J., Lu, Y. H. & Gong, J. 2009. Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrological Processes 23, 17801791.
Wei, W., Jia, F. Y., Yang, L., Chen, L. D., Zhang, H. D. & Yu, Y. 2014. Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China. Journal of Hydrology 513, 115126.
Wischmeier, W. H. & Smith, D. D. 1978. Predicting rainfall erosion losses: a guide to conservation planning, 537. Washington: US Department of Agriculture, Agricultural Research Service, Agriculture Handbook.
Xin, Z. B., Xu, J. X. & Zheng, W. 2008. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): impacts of climate changes and human activities. Science in China Series D-Earth Sciences 51, 6778.
Xu, X. L., Liu, W., Kong, Y. P., Zhang, K. L., Yu, B. F. & Chen, J. D. 2009. Runoff and water erosion on road side-slopes: effects of rainfall characteristics and slope length. Transportation Research Part D-Transport and Environment 14, 497501.
Yeh, H. Y., Wensel, L. C. & Turnblom, E. C. 2000. An objective approach for classifying precipitation patterns to study climatic effects on tree growth. Forest Ecology and Management 139, 4150.
Zhang, G. H., Liu, G. B., Yi, L. & Zhang, P. C. 2014. Effects of patterned Artemisia capillaris on overland flow resistance under varied rainfall intensities in the Loess Plateau of China. Journal of Hydrology and Hydromechanics 62, 334342.
Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, P. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development 24, 499510.
Zhou, D., Zhao, S. & Zhu, C. 2012. The Grain for Green Project induced land cover change in the Loess Plateau: a case study with Ansai County, Shanxi Province, China. Ecological Indicators 23, 8894.
Zhou, J., Fu, B., Gao, G., , Y., Liu, Y., , N. & Wang, S. 2016. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena 137, 111.
Zuazo, V. H. D. & Pleguezuelo, C. R. R. 2008. Soil-erosion and runoff prevention by plant covers. A review. Agronomy for Sustainable Development 28, 6586.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Earth and Environmental Science Transactions of The Royal Society of Edinburgh
  • ISSN: 1755-6910
  • EISSN: 1755-6929
  • URL: /core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed