Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T12:24:20.873Z Has data issue: false hasContentIssue false

Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas

Published online by Cambridge University Press:  03 November 2011

Bernard Barbarin
Affiliation:
Bernard Barbarin, Laboratoire de Pétrographie-Volcanologie, Université de Paris-Sud, Bât. 504, F-91405 Orsay Cedex, France
Jean Didier
Affiliation:
Jean Didier, Département des Sciences de la Terre, Université Blaise Pascal et URA 10 C.N.R.S., 5, rue Kessler, F-63038 Clermont-Ferrand Cedex, France

Abstract

Thermal, mechanical and chemical exchange occurs between felsic and mafic magmas in dynamic magma systems. The occurrence and efficiency of such exchanges are constrained mainly by the intensive parameters, the compositions, and the mass fractions of the coexisting magmas. As these interacting parameters do not change simultaneously during the evolution of the granite systems, the exchanges appear sequentially, and affect magmatic systems at different structural levels, i.e. in magma chambers at depth, in the conduits, or after emplacement. Hybridisation processes are especially effective in the plutonic environment because contrasting magmas can interact over a long time-span before cooling. The different exchanges are complementary and tend to reduce the contrasts between the coexisting magmas. They can be extensive or limited in space and time; they are either combined into mixing processes which produce homogeneous rocks, or only into mingling processes which produce rocks with heterogeneities of various size-scales. Mafic microgranular enclaves represent the most common heterogeneities present in the granite plutons. The composite enclaves and the many types of mafic microgranular enclaves commonly associated in a single pluton, or in polygenic enclave swarms, are produced by the sequential occurrence of various exchanges between coexisting magmas with constantly changing intensive parameters and mass fractions. The complex succession and repetition of exchanges, and the resulting partial chemical and complete isotopic equilibration, mask the original identities of the initial components.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alibert, C. 1980. Etude expérimental de la diffusion chimique des éléments majeurs entre verres et liquides de composition rhyolitique, basaltique et phonolitique. Unpublished thesis, Université P. et M. Curie, Paris VII, France.CrossRefGoogle Scholar
Alibert, C. & Carron, J. P. 1980. Données expérimentales sur la diffusion des éléments majeurs entre verres ou liquides de compositions basaltique, rhyolitique et phonolitique, entre 900°C et 1300°C, à pression ordinaire. EARTH PLANET SCI LETT 47, 294306.CrossRefGoogle Scholar
Alibert, C. & Delbove, F. 1980. Données préliminaires sur le rôle de l'eau dans la diffusion chimique entre rhyolite et phonolite fondues à 900°C sous une pression d'eau de 4 kbar. C R ACAD SCI PARIS 291, 789–92.Google Scholar
Allen, C. M. 1991. aLocal equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence. AM MINERAL 76, 574–88Google Scholar
Bacon, C. R. 1986. Magmatic inclusions in silicic and intermediate volcanic rocks. J GEOPHYS RES 91B, 6091–112.CrossRefGoogle Scholar
Baker, D. R. 1989. Tracer versus trace element diffusion: diffusional decoupling of Sr concentration from Sr isotope composition. GEOCHIM COSMOCHIM ACTA 53, 3015–23.CrossRefGoogle Scholar
Baker, D. R. 1990. Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 Kbar, application of transition state theory, and diffusion in zoned magma chambers. CONTRIB MINERAL PETROL 104, 407–23.CrossRefGoogle Scholar
Barbarin, B. 1988. Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint Julien-la-Vêtre Monzogranite (Nord Forez, Massif Central, France). CAN J EARTH SCI 25, 4959.CrossRefGoogle Scholar
Barbarin, B. 1989. Importance des différents processus d'hybridation dans les plutons granitiques du batholite de la Sierra Nevada, Californie. SCHWEIZ MINERAL PETROGR MITT 69, 303–15.Google Scholar
Barbarin, B. 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada Batholith, California. J GEOPHYS RES 95, 17747–56.CrossRefGoogle Scholar
Barbarin, B. 1991a. Contrasted origins for the “polygenic” and “monogenic” enclave swarms in some granitoids of the Sierra Nevada batholith, California. TERRA ABSTR 2, 32.Google Scholar
Barbarin, B. 1991b. Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada batholith, California. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 135–53. Amsterdam: Elsevier.Google Scholar
Barbarin, B., Dodge, F. C. W. & Kistler, R. W. 1985. REE contents and Rb-Sr systematics of mafic enclaves and other associated mafic rocks, central Sierra Nevada, California. EOS 66, 1150.Google Scholar
Barbarin, B., Dodge, F. C. W., Kistler, R. W. & Bateman, P. C. 1989. Mafic inclusions and associated aggregates and dikes in granitoid rocks, central Sierra Nevada batholith. Analytic data. U S GEOL SURV BULL 1899, 128.Google Scholar
Barbarin, B. & Didier, J. 1991. Review of the main hypotheses proposed for the genesis and evolution of mafic microgranular enclaves. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 367–73. Amsterdam: Elsevier.Google Scholar
Barnes, C. G. 1983. Petrology and upward zonation of the Wooley Creek Batholith, Klamath Mountains, California. J PETROL 24, 495537.CrossRefGoogle Scholar
Bateman, P. C. & Chappell, B. W. 1979. Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. GEOL SOC AM BULL 90, 465–82.2.0.CO;2>CrossRefGoogle Scholar
Bébien, J., Gagny, C. & Tanani, S.Soussi 1987. Les associations de magmas acides et basiques: des objets fractals? C R ACAD SCI PARIS 305, 277–80.Google Scholar
Belin, J. M. 1988. Evolution des enclaves basiques et de leur matrice dans un granite. L'exemple du granite porphyroïde de Saint-Gervais d'Auvergne (Massif Central français). C R ACAD SCI PARIS 307, 387–93.Google Scholar
Blake, S. & Campbell, I. H. 1986. The dynamics of magma-mixing during flow in volcanic conduits. CONTRIB MINERAL PETROL 94, 7281.CrossRefGoogle Scholar
Blake, S. & Koyaguchi, T. 1991. Insights on the magma mixing model from volcanic rocks. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 403–13. Amsterdam: Elsevier.Google Scholar
Bowen, N. L. 1922. The behavior of inclusions in igneous magmas. J PETROL 30, 513–70.Google Scholar
Briot, D. 1990. Magma mixing versus xenocryst assimilation: The genesis of trachyandesites in Sancy volcano, Massif Central, France. LITHOS 25, 227–41.CrossRefGoogle Scholar
Bussy, F. 1990. Pétrogenèse des enclaves microgrenues associées aux granitoïdes calcoalcalins: exemple des massifs varisque du Mont-Blanc (Alpes occidentales) et miocène du Monte Capanne (Ile d'Elbe, Italie). MÉM GÉOL 7, Université de Lausanne.Google Scholar
Campbell, I. H. & Turner, J. S. 1985. Turbulent mixing between fluids with different viscosities. NATURE 313, 3942.CrossRefGoogle Scholar
Campbell, I. H. & Turner, J. S. 1986. The influence of viscosity on fountains in magma chambers. J PETROL 27, 130.CrossRefGoogle Scholar
Campbell, I. H. & Turner, J. S. 1989. Fountain in magma chambers. J PETROL 30, 885923.CrossRefGoogle Scholar
Cantagrel, J. M., Didier, J. & Gourgaud, A. 1984. Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism. PHYS EARTH PLANET SCI 35, 6376.CrossRefGoogle Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1111–38.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1991. Restite enclaves and the restite model. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 375–81. Amsterdam: Elsevier.Google Scholar
Cobbing, E. J. & Pitcher, W. S. 1972. The Coastal Batholith of Central Peru. J GEOL SOC LONDON 128, 421–60.CrossRefGoogle Scholar
Cocirta, C. & Orsini, J. B. 1986. Signification de la diversité de composition des enclaves “microgrenues” sombres en contexte plutonique. L'exemple des plutons calcocalcalins de Bono et Buddusò (Sardaigne septentrionale). C R ACAD SCI PARIS 302, 331–6.Google Scholar
Cramer, J. J. & Kwak, T. A. P. 1988. A geochemical study of zoned inclusions in granitic rocks. AM J SCI 288, 827–71.CrossRefGoogle Scholar
Debon, F. 1975. Les massifs granitoïdes a structure concentrique de Cauterets-Panticosa (Pyrénées occidentales) et leurs enclaves. Une étude pétrographique et géochimique. MEM SCI TERRE 33.Google Scholar
Debon, F. 1991. Comparative major element chemistry in various “microgranular enclave-plutonic host” pairs. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 293312. Amsterdam: Elsevier.Google Scholar
DePaolo, D. J. 1981. A neodymium and strontium isotopic study of the Mesozoic calcalkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J GEOPHYS RES 86, 10470–88.CrossRefGoogle Scholar
Didier, D. J. 1973. Granites and their enclaves. The bearing of enclaves on the origin of granites. DEV PETROL 3 Amsterdam: Elsevier.Google Scholar
Didier, J. 1987. Contribution of enclave studies to the understanding of origin and evolution of granitic magmas. GEOL RUNDSCHAU 76, 4150.CrossRefGoogle Scholar
Didier, J. & Barbarin, B. (eds.) 1991. Enclaves and granite petrology. DEV PETROL 13. Amsterdam: Elsevier.Google Scholar
Didier, J. & Lameyre, J. 1969. Les granites du Massif Central français: étude comparée des leucogranites et granodiorites. CONTRIB MINERAL PETROL 24, 219–38.CrossRefGoogle Scholar
Dodge, F. C. W. & Kistler, R. W. 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. J GEOPHYS RES 95, 17841–8.CrossRefGoogle Scholar
Dorais, M. J., Whitney, J. A. & Roden, M. F. 1990. Origin of mafic enclaves in the Dinkey Creek pluton, central Sierra Nevada Batholith, California. J PETROL 31, 853–81.CrossRefGoogle Scholar
Fernandez, A. N. & Barbarin, B. 1991. Relative rheology of coexisting mafic and felsic magmas: Nature of resulting interaction processes. Shape and mineral fabrics of mafic microgranular enclaves. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 263–75. Amsterdam: Elsevier.Google Scholar
Fershtater, G. B. & Borodina, N. S. 1977. Petrology of autoliths in granitic rocks. INT GEOL REV 19, 458–68.CrossRefGoogle Scholar
Fershtater, G. B. & Borodina, N. S. 1991. Enclaves in the Hercynian granitoids of the Ural Mountains U.S.S.R.. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 8394. Amsterdam: Elsevier.Google Scholar
Fourcade, S. & Javoy, M. 1991. Sr-Nd-O isotopic features of mafic microgranular enclaves and host granitoids from the Pyrenees, France: Evidence for their hybrid nature and inference on their origin. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 345–64. Amsterdam: Elsevier.Google Scholar
Furman, T. & Spera, F. J. 1985. Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: field and petrochemical relations of an usual dike complex at Eagle Peak Lake, Sequoia National Park, California U.S.A. J VOLCANOL GEOTHERM RES 24, 151–78.CrossRefGoogle Scholar
Gamble, J. A. 1979. Some relationships between coexisting granitic and basaltic magmas and the genesis of hybrid rocks in the Tertiary central complex of Slieve Gullion, northeast Ireland. J VOLCANOL GEOTHERM RES 5, 297316.CrossRefGoogle Scholar
Gourgaud, A., Cantagrel, J. M. & Vincent, P. M. 1981. Mélange de magmas et pétrogenèse des trachyandésites du Mont-Dore (Massif Central français). C R AC AD SCI PARIS 293, 711–6.Google Scholar
Hibbard, M. J. & Watters, R. J. 1985. Fracturing and diking in incompletely crystallized granitic plutons. LITHOS 18, 112.CrossRefGoogle Scholar
Hofmann, A. W. 1980. Diffusion in natural silicate melts: a critical review. In Hargraves, R. B. (ed.) Physics of magmatic processes, 385417. Princeton, New Jersey: Princeton University Press.CrossRefGoogle Scholar
Holden, P., Halliday, A. N. & Stephens, W. E. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input into granitoid production. NATURE 330, 53–6.CrossRefGoogle Scholar
Huppert, H. E., Sparks, R. S. J. & Turner, J. S. 1984. Some effects of viscosity on the dynamics of replenished magma chamber. J GEOPHYS RES 89, 6857–77.CrossRefGoogle Scholar
Huppert, H. E. & Sparks, R. S. J. 1988. The generation of granitic magmas by intrusion of basalt into the crust. J PETROL 29, 599624.CrossRefGoogle Scholar
Johnston, A. D. & Wyllie, P. J. 1988. Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. CONTRIB MINERAL PETROL 98, 352–62.CrossRefGoogle Scholar
Kouchi, A. & Sunagawa, I. 1983. Mixing basaltic and dacitic magmas by forced convection. NATURE 304, 527–8.CrossRefGoogle Scholar
Kouchi, A. & Sunagawa, I. 1985. A model for mixing basaltic and dacitic magmas as deduced from experimental data. CONTRIB MINERAL PETROL 89, 1723.CrossRefGoogle Scholar
Koyaguchi, T. 1985. Magma mixing in a conduit. J VOLCANOL GEOTHERM RES 25, 365–9.CrossRefGoogle Scholar
Koyaguchi, T. 1986. Evidence for two-stage mixing in magmatic inclusions and rhyolitic lava domes on Niijima Island, Japan. J VOLCANOL GEOTHERM RES 29, 7198.CrossRefGoogle Scholar
Koyaguchi, T. 1987. Magma mixing in a squeezed conduit. EARTH PLANET SCI LETT 84, 339–44.CrossRefGoogle Scholar
Koyaguchi, T. & Blake, S. 1991. Origin of mafic enclaves: Constraints on the magma mixing model from fluid dynamic experiments. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 415429. Amsterdam: Elsevier.Google Scholar
Kumar, S. C. 1988. Microgranular enclaves in granitoids: agents of magma mixing. J SOUTHEAST ASIAN EARTH SCI 2, 109–21.CrossRefGoogle Scholar
Lesher, C. E. 1990. Decoupling of chemical and isotopic exchange during magma mixing. NATURE 344, 235–7.CrossRefGoogle Scholar
Oldenburg, C. L. M., Spera, F. J., Yuen, D. A. & Sewell, L. G. 1989. Dynamic mixing in magma bodies: theory, simulations and implications. J GEOPHYS RES 94, 9215–36.CrossRefGoogle Scholar
Pabst, A. 1928. Observations on inclusions in the granitic rocks of the Sierra Nevada. UNIV CALIFORNIA PUB DEPT GEOL SCI 17, 325–86.Google Scholar
Pin, C. 1991. Sr-Nd isotopic study of igneous and metasedimentary enclaves in some Hercynian granitoids from the Massif Central, France. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 333–43. Amsterdam: Elsevier.Google Scholar
Pin, C., Binon, M., Belin, J. M., Barbarin, B. & Clemens, J. D. 1990. Origin of microgranular enclaves in granitoids: equivocal Sr-Nd evidence from Hercynian rocks in the Massif Central (France). J GEOPHYS RES 95, 17821–8.CrossRefGoogle Scholar
Pitcher, W. S. 1991. Synplutonic dykes and mafic enclaves. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 383–91. Amsterdam: Elsevier.Google Scholar
Roddick, J. A. & Armstrong, J. E. 1959. Relict dikes in the Coast Mountains near Vancouver B. C., J GEOL 67, 603–13.CrossRefGoogle Scholar
Shaw, H. R., Smith, R. L & Hildreth, W. 1976. Thermogravitational mechanisms for chemical variations in zoned magma chambers. GEOL SOC AM ABSTR PROG 8, 1102.Google Scholar
Sparks, R. S. J., Sigurdsson, H. & Wilson, L. 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. NATURE 267, 315–8.CrossRefGoogle Scholar
Sparks, R. S. J. & Marshall, L. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J VOLCANOL GEOTHERM RES 29, 99124.CrossRefGoogle Scholar
Watson, E. B. 1981. Diffusion in magmas at depth in the Earth: the effects of pressure and dissolved H2O. EARTH PLANET SCI LETT 52, 291301.CrossRefGoogle Scholar
Watson, E. B. 1982. Basalt contamination by continental crust: some experiments and models. CONTRIB MINERAL PETROL 80, 7387.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
Wiebe, R. A. 1973. Relations between coexisting basaltic and granitic magmas in a composite dike. AM J SCI 273, 130–51.CrossRefGoogle Scholar
Wiebe, R. A. 1980. Commingling of contrasted magmas in the plutonic environment: examples from the Nain anorthositic complex. J GEOL 88, 197209.Google Scholar
Wiebe, R. A. 1991. Commingling of contrasted magmas and generation of mafic enclaves in granitic rocks. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 393402. Amsterdam: Elsevier.Google Scholar
Yoder, H. S. Jr 1973. Contemporaneous basaltic and rhyolitic magmas. AM MINERAL 58, 153–71.Google Scholar