Skip to main content
×
×
Home

Lift based mechanisms for swimming in eurypterids and portunid crabs

  • Roy E. Plotnick (a1)
Abstract

The striking morphological similarity that exists between appendages of the extant portunid crabs, such as Callinectes sapidus, and those of the extinet eurypterids has long been noted. The fifth pair of pereiopods in blue crags and other portunids are modified to form the broad, flat, highly mobile ‘swim paddles.’ A nearly identical modification is seen in the sixth pair of prosomal appendages of many eurypterids. The similarities are due to convergence and not to shared descent.

The kinetics of blue crab swimming were studied using high speed films. The animals are capable of slow upwards locomotion (‘hovering’) and rapid sideways swimming. The blue crab paddles apparently act as reciprocating hydrofoils, employing well-understood principles of lift and thrust generation to overcome the animal's weight and drag. Experimental studies indicated that the paddles are capable of producing appreciable amounts of lift. Drag on the body and paddles was also determined. Resxults are similar to those obtained in previous studies of bird and insect flight.

The physical principles employed to study blue crab swimming can be applied to the study of eurypterid locomotion. The eurypterid paddles may have functioned as hydrofoils, producing lift and thrust on forestroke and backstroke. Eurypterids were probably highly agile and manoueverable swimmers, capable of hovering and of high speed swimming. This model predicts observed morphological correlates. Predicted morphological correlates of earlier models (often based on analogies with Limulus) were not found.

The observed convergence between eurypterids and blue crabs may have resulted from similar functional constraints and parallel phylogenetic histories.

Copyright
References
Hide All
Bergstrom, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships. In Gupta, A. P. (ed.) Arthropod Phytogeny, 356. New York: Van Nostrand Reinhold.
Blake, R. W. 1981. Mechanics of drag based mechanisms of propulsion in aquatic vertebrates. SYMP ZOOL SOC LONDON 48, 2952.
Blake, R. W. 1983. Fish Locomotion. Cambridge: Cambridge University Press.
Blundon, J. A. & Kennedy, V. S. 1982. Mechanical & behavioral aspects of blue crab (Callinectes sapidus) predation on Chesapeake Bay bivalves. J EXP MAR BIOL ECOL 65, 4766.
Briggs, D. E. & Williams, S. H. 1981. The restoration of flattened fossils. LETHAIA 14, 157–64.
Cisne, J. L. 1974. Evolution of the world fauna of aquatic freeliving arthropods. EVOLUTION 28, 337–66.
Cisne, J. L. 1982. Origin of the Crustacea. In Abele, L. G. (ed.) The Biology of Crustacea, Vol. 1: Systematics, the Fossil Record, and Biogeography, 6592. San Francisco: Academic Press.
Clark, B. D. & Bemis, W. 1979. Kinematics of swimming of penguins at the Detroit Zoo. J ZOOL LONDON 188, 411–28.
Clarke, J. M. & Ruedemann, R. 1912. The Eurypterida of New York. MEM NEW YORK STATE MUS NAT HIST 14.
Cochran, D. M. 1935. The skeletal musculature of the blue crab Callinectes sapidus Rathburn. SMITHSON MISC COLLECT 92, 176.
Cowen, R. 1979. Functional morphology. In Fairbridge, R. & Jablonski, D. (eds) The Encyclopedia of Paleontology, 487–92. Stroudsburg, Pa.: Dowden, Hutchinson & Ross.
Davenport, J., Munk, S. & Oxford, P. J. 1984. A comparison of the swimming of marine and freshwater turtles. PROC R SOC LONDON B 220, 447–75.
Ellington, C. P. 1984. The aerodynamics of hovering insect flight. PHILOS TRANS R SOC LONDON B 305, 1181.
Fisher, D. C. 1975. Swimming and burrowing in Limulus and Mesolimulus. FOSSILS STRATA 4, 281–90.
Fisher, D. C. 1977. Functional significance of spines in the Pennsylvanian horseshoe crab Euproops danae. PALEOBIOLOGY 3, 175–95.
Hall, J. E. 1859. The Paleontology of New York, Vol. III.
Hanken, N. M. & Størmer, L.. 1975. The trail of a large Silurian eurypterid. FOSSILS STRATA 4, 255–70.
Hartnoll, R. G. 1971. The occurrence, methods, and significance of swimming in the Brachyura. ANIM BEHAV 19, 3450.
Hessler, R. R. 1981. Evolution of arthropod locomotion; a crustacean model. In Herreid, C. F. and Fourtner, C. R. (eds) Locomotion and Energetics in Arthropods, 930. New York: Plenum.
Hessler, R. R. 1982. The structural morphology of walking mechanisms in Eumalacostracan crustaceans. PHILOS TRANS R SOC LONDON B 296, 245–98.
Holm, G. 1898. Über die Organisation des Eurypterus Fischeri Eichw. MEM ACAD SCI ST PETERSBOURG 8, 157.
Hoyle, G. & Burrows, M. 1973. Correlated physiological and ultrastructural studies on specialized muscles. IIIa. Neuromuscular physiology of the power-stroke muscle of Portunus sanguinolentus. J EXP ZOOL 185, 8396.
Kjellesvig-Waering, E. N. 1964. A synopsis of the family Pterygotidae Clarke & Ruedemann 1912. (Eurypterida). J PALEONTOL 38, 331–61.
Kjellesvig-Waering, E. N. 1979. Eurypterida. In Fairbridge, R. & Jablonski, D. (eds) The Encyclopedia of Paleontology, 290295Stroudsburg, Pa: Dowden, Hutchinson & Ross.
Kühl, H. 1933. Die Fortbewegung der Schwimmkrabben mit Bezug auf die Plastizität Nervensystems. Z VGL PHYSIOL 19, 489521.
Lauder, G. V. 1981. Form and function, structural analysis in evolutionary morphology. PALEOBIOLOGY 7, 430–42.
Lighthill, M. J. 1969. Hydromechanics of aquatic animal propulsion. ANNU REV FLUID MECH 1, 413–46.
Lighthill, J. 1975. Aerodynamic aspects of animal flight. In Wu, T. Y., Brokan, C. J. & Brennen, C. (eds) Swimming and Flying in Nature, Vol. 2, 423–92. New York: Plenum Press.
Lochhead, J. H. 1977. Unsolved problems of interest in the locomotion of Crustacea. In Pedley, T. J. (ed.) Scale Effects in Animal Locomotion, 257–68. New York: Academic Press.
MacConail, M. S. & Basmagian, J. V. 1969. Muscles and Movements. Boston: Williams and Wilkens.
Nachtigall, W. 1977. Swimming mechanisms and energetics of locomotion of variously sized water beetles-Dyttiscidae, body length 2 to 35 mm. In Pedley, T. J. (ed.) Scale Effects in Animal Locomotion, 269–83. London: Academic Press.
Nachtigall, W. 1981. Hydromechanics and biology. BIOPHYS STRUCT MECH 8, 122.
Plotnick, R. E. 1982. Swimming in blue crabs and eurypterids. GEOL SOC AM ABSTR PROGRAMS 14, 589.
Plotnick, R. E. 1983. Patterns in the Evolution of the Eurypterids. Unpublished PhD thesis: University of Chicago.
Robinson, J. A. 1975. The locomotion of plesiosaurs. NEUES JAHRB GEOL PALEONTOL ABH 149, 286322.
Schäfer, W. 1954. Form und Funktion der Brachyuran-Schere. ABH SENCKENBERGIANA NATURFORSCH GES 489, 165.
Schmidt-Nielsen, K. 1983. Animal Physiology: Adaptation and Environment, 3rd edn. Cambridge: Cambridge University Press.
Schram, F. R. 1982. The fossil record and the evolution of Crustacea. In, Abele, L. G. (ed.) The Biology of Crustacea, Vol. 1: Systematics, the Fossil Record, and Biogeography, 93147. San Francisco: Academic Press.
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. LETHAIA 3, 393–6.
Selden, P. A. 1981. Functional morphology of the prosoma of Baltoeurypterus tetraganophthalmus (Fischer). TRANS R SOC EDINBURGH: EARTH SCI 72, 948.
Snodgrass, R. E. 1965. A Textbook of Arthopod Anatomy. New York: Hafner.
Spaargaeren, D. H. 1979. Hydrodynamic properties of benthic marine Crustacea. MAR ECOL: PROG SER 1, 351–9.
Spirito, C. P. 1972. An analysis of swimming behavior in the portunid crab Callinectes sapidus. MAR BEHAV PHYSIOL 1, 261–76.
Stephenson, W. 1962. Evolution and ecology of portunid crabs, with especial reference to Australian species. In Leeper, G. W. (ed.) The Evolution of Living Organisms, 311–27. Melbourne: Melbourne University Press.
Størmer, L. 1934. Merostomata from the Downtonian sandstone of Ringerike, Norway, SKR NOR VIDENSK-AKAD MATNATURVIDENSK KL 10, 1125.
Størmer, L. 1936. Eurypteridan aus dem Rheinsichen Unterdevon. ABH PREUSS GEOL LANDESANST 175, 174.
Størmer, L. 1973. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 3. Eurypterida, Hughmilleridae. SENCKENBERGIANA LETHAEA 54, 119205.
Thomas, R. D. K. 1979 Constructional morphology. In Fairbridge, R. & Jablonski, D. (eds) The Encyclopedia of Paleontology, 482–7. Stroudsburg, PA.: Dowden, Hutchinson & Ross.
Vogel, S. 1981. Life in Moving Fluids. Boston: Willard Grant.
Vogel, S. & LaBarbera, M. 1978. Simple flow tanks for research and teaching. BIOSCIENCE 28, 638–43.
Waterston, C. D. 1975. Gill structures in the lower Devonian eurypterid Tarsopterella scotica. FOSSILS STRATA 4, 241–54.
Webb, P. W. 1982. Locomotor patterns in the evolution of Actinopterygian fishes. AM ZOOL 22, 329–42.
Webb, P. W. 1984. Form and function in fish swimming. SCI AM 251, 7282.
Weis-Fogh, T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J EXP BIOL 59, 169230.
White, A. Q. & Spirito, C. P. 1973. Anatomy and physiology of the swimming leg musculature in the blue crab Callinectes sapidus. MAR BEHAV PHYSIOL 2, 141–53.
Williams, A. B. 1973. The swimming crabs of the genus Callinectes (Decapoda, Portunidae). FISH BULL 72, 685798.
Wills, L. J. 1965. A supplement to Gerhard Holm's ‘Über die Organisation des Eurypterus fischeri Eichw.’ with special references to the organs of sight, respiration & reproduction. ARK ZOOL 18, 93145.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Earth and Environmental Science Transactions of The Royal Society of Edinburgh
  • ISSN: 1755-6910
  • EISSN: 1755-6929
  • URL: /core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed