Skip to main content Accessibility help

A review of preservational variation of fossil inclusions in amber of different chemical groups

  • Victoria E. McCoy (a1), Carmen Soriano (a2) and Sarah E. Gabbott (a1)

Fossils in amber are a particularly important and unique palaeobiological resource. Amber is best known for preserving exceptionally life-like fossils, including microscopic anatomical details, but this fidelity of preservation is an end-member of a wide spectrum of preservation quality. Many amber sites only preserve cuticle or hollow moulds, and most amber sites have no fossils at all. The taphonomic processes that control this range in preservation are essentially unknown. Here, we review the relationship between amber groups and fossil preservation, based on published data, to determine whether there is a correlation between resin type and aspects of preservation quality. We found that ambers of different chemistry demonstrated statistically significant differences in the preservational quality and the propensity of a site to contain fossils. This indicates that resin chemistry does influence preservational variation; however, there is also evidence that resin chemistry alone cannot explain all the variation. To effectively assess the impact of this (and other) variables on fossilisation in amber, and therefore biases in the amber fossil record, a more comprehensive sampling of bioinclusions in amber, coupled with rigorous taphonomic experimentation, is required.

Corresponding author
*Corresponding author
Hide All
Anderson, K. B. 1994. The nature and fate of natural resins in the geosphere – IV. Middle and Upper Cretaceous amber from the Taimyr Peninsula, Siberia – evidence for a new form of polylabdanoid of resinite and revision of the classification of Class I resinites. Organic Geochemistry 21, 209–12.
Anderson, K. B. 1996. The nature and fate of natural resins in the geosphere – VII. A radiocarbon (14C) age scale for description of immature natural resins: an invitation to scientific debate. Organic Geochemistry 25, 251–53.
Anderson, K. B. & Botto, R. 1993. The nature and fate of natural resins in the geosphere—III. Re-evaluation of the structure and composition of Highgate Copalite and Glessite. Organic Geochemistry 20, 1027–38.
Anderson, K. B. & Winans, R. 1991. The nature and fate of natural resins in the geosphere. 1. Evaluation of pyrolysis-gas chromatography-mass spectrometry for the analysis of natural resins and resinites. Analytical Chemistry 63, 2901–08.
Austin, J. J., Ross, A. J., Smith, A. B., Fortey, R. A., & Thomas, R. H. 1997. Problems of reproducibility–does geologically ancient DNA survive in amber–preserved insects? Proceedings of the Royal Society, London B: Biological Sciences 264, 467–74.
Azar, D., Gèze, R. & Acra, F. 2010. Lebanese amber. In Penney, D. (ed.) Biodiversity of Fossils in Amber from the Major World Deposits, 271–98. Manchester, UK: Siri Scientific Press. 304 pp.
Becerra, J. X., Venable, D., Evans, P. & Bowers, W. 2001. Interactions between chemical and mechanical defenses in the plant genus Bursera and their implications for herbivores. American Zoologist 41, 865–76.
Beck, C. W. 1999. The chemistry of amber. Estudios del Museo de Ciencias Naturales de Álava 14, 3348.
Boucot, A. J. & Poinar, G. O. Jr. 2010. Fossil Behaviour Compendium. CRC Press. 391 pp.
Bray, P. S. & Anderson, K. B. 2009. Identification of Carboniferous (320 million years old) class Ic amber. Science 326, 132–34.
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31, 275301.
Colchester, D. M., Webb, G. & Emseis, P. 2006. Amber-like fossil resin from north Queensland, Australia. Gemmologist 22, 378–85.
Coty, D., Aria, C., Garrouste, R., Wils, P., Legendre, F. & Nel, A. 2014. The first ant-termite syninclusion in amber with CT-scan analysis of taphonomy. PloS one 9, e104410.
del Rosario Castañeda, M., Sherratt, E. & Losos, J. B. 2014. The Mexican amber anole, Anolis electrum, within a phylogenetic context: implications for the origins of Caribbean anoles. Zoological Journal of the Linnean Society 172, 133–44.
Dierick, M., Cnudde, V., Masschaele, B., Vlassenbroeck, J., Van Hoorebeke, L. & Jacobs, P. 2007. Micro-CT of fossils preserved in amber. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580, 641–43.
Grimaldi, D., Bonwich, E., Delannoy, M. & Doberstein, S. 1994. Electron microscopic studies of mummified tissues in amber fossils. American Museum Novitates 3097, 131.
Henwood, A. 1992. Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. PALAIOS 7, 203–12.
Kirejtshuk, A. G., Azar, D., Tafforeau, P., Boistel, R. & Fernandez, V. 2009. New beetles of Polyphaga (Coleoptera, Polyphaga) from Lower Cretaceous Lebanese amber. Denisia 26, 119–30.
Labandeira, C. 2014. Amber. Reading and Writing of the Fossil record: Preservational Pathways to Exceptional Fossilization, Paleontological Society Papers 20, 163216.
Lak, M., Néraudeau, D., Nel, A., Cloetens, P., Perrichot, V. & Tafforeau, P. 2008. Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microscopy and microanalysis 14, 251–59.
Lambert, J. B., Frye, J. S. & Poinar, G. O. 1990. Analysis of North American amber by carbon-13 NMR spectroscopy. Geoarchaeology 5, 4352.
Lambert, J. B., Johnson, S. C., Poinar, G. O. & Frye, J. S. 1993. Recent and fossil resins from New Zealand and Australia. Geoarchaeology 8, 141–55.
Lambert, J. B., Johnson, S. C. & Poinar, G. O. Jr 1995. Resin from Africa and South America: criteria for distinguishing between fossilized and recent resin based on NMR spectroscopy. ACS Symposium Series 617, 193202.
Lambert, J. B., Johnson, S. & Poinar, G. 1996. Nuclear magnetic resonance characterization of Cretaceous amber. Archaeometry 38, 325–35.
Lambert, J. B., Santiago-Blay, J. A. & Anderson, K. B. 2008. Chemical signatures of fossilized resins and recent plant exudates. Angewandte Chemie International Edition 47, 9608–16.
Lambert, J. B., Tsai, C. H., Shah, M., Hurtley, A. & Santiago-Blay, J. 2012. Distinguishing amber and copal classes by proton magnetic resonance spectroscopy. Archaeometry 54, 332–48.
Lambert, J. B., Levy, A. J., Santiago-Blay, J. A. & Wu, Y. 2013. Nuclear magnetic resonance characterization of Indonesian amber. Life: The Excitement of Biology 1, 136.
Lambert, J. B., Santiago-Blay, J. A., Wu, Y. & Levy, A. J. 2015. Examination of amber and related materials by NMR spectroscopy. Magnetic Resonance in Chemistry 53, 28.
Langenheim, J. H. 1990. Plant resins. American Scientist 78, 1624.
Langenheim, J. H. 1995. Biology of amber-producing trees: focus on case studies of Hymenaea and Agathis . In Penney, D. (ed.) Amber, Resinite and Fossil Resin, 131. Washington, DC: American Chemical Society. 297 pp.
Langenheim, J. H. 2003. Plant resins: chemistry, evolution, ecology and ethnobotany. Oregon, USA: Timber Press. 586 pp.
Martínez-Delclòs, X., Briggs, D. E. G. & Peñalver, E. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 1964.
Martínez-Delclòs, X., Arillo, A., Peñalver, E., Barrón, E., Soriano, C., Del Valle, R. L., Bernárdez, E., Corral, C. & Ortuño, V. M. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol 6, 135–49.
Mazur, N., Nagel, M., Leppin, U., Bierbaum, G. & Rust, J. 2014. The extraction of fossil arthropods from Lower Eocene Cambay amber. Acta Palaeontologica Polonica 59, 455–59.
Moreau, J.-D., Cloetens, P., Gomez, B., Daviero-Gomez, V., Néraudeau, D., Lafford, T. A. & Tafforeau, P. 2014. Multiscale 3D virtual dissections of 100-million-year-old flowers using X-Ray synchrotron micro-and nanotomography. Microscopy and Microanalysis 20, 305–12.
Nel, A. & Prokop, J. A. 2005. New fossil Scelionidae (Insecta: Hymenoptera) in early Paleogene. Polskie Pismo Entomologiczne 74, 339–47.
Peñalver, E., Arillo, A., Pérez-de la Fuente, R., Riccio, M. L., Delclòs, X., Barrón, E. & Grimaldi, D. A. 2015. Long-proboscid flies as pollinators of Cretaceous gymnosperms. Current Biology 25, 1917–23.
Penney, D. 2002. Paleoecology of Dominican amber preservation: spider (Araneae) inclusions demonstrate a bias for active, trunk-dwelling faunas. Paleobiology 28, 389–98.
Penney, D. 2010. Dominican amber. In Penney, D. (ed.) Biodiversity of Fossils in Amber from the Major World Deposits, 2241. Manchester, UK: Siri Scientific Press. 304 pp.
Penney, D. 2016. Amber Palaeobiology: Research trends and perspectives for the 21st century. Manchester, UK: Siri Scientific Press. 128 pp.
Penney, D., Wadsworth, C., Fox, G., Kennedy, S. L., Preziosi, R. F. & Brown, T. A. 2013. Absence of ancient DNA in sub fossil insect inclusions preserved in 'Anthropocene' Colombian copal. PLoS ONE 8, e73150.
Penney, D. & Green, D. 2010. Introduction, preparation, study & conservation of amber inclusions. In Penney, D. (ed.) Biodiversity of Fossils in Amber from the Major World Deposits, 521. Manchester, UK: Siri Scientific Press. 304 pp.
Penney, D. & Jepson, J. E. 2014. Fossil Insects: An introduction to palaeoentomology. Manchester, UK: Siri Scientific Press. 224 pp.
Penney, D. & Langan, A. M. 2006. Comparing amber fossil assemblages across the Cenozoic. Biology letters 2, 266–70.
Penney, D. & Preziosi, R. F. 2010. On inclusions in subfossil resins (copal). In Penney, D. (ed.) Biodiversity of fossils in amber from the major world deposits, 300–04. Manchester, UK: Siri Scientific Press. 304 pp.
Penney, D. & Preziosi, R. F. 2014. Estimating fossil ant species richness in Eocene Baltic amber. Acta Palaeontologica Polonica 59, 927–29.
Pérez-de la Fuente, R., Delclòs, X., Peñalver, E. and Engel, M. S. 2016. A defensive behavior and plant–insect interaction in Early Cretaceous amber – The case of the immature lacewing Hallucinochrysa diogenesi . Arthropod structure & development 45, 133–39.
Phillips, M. A. & Croteau, R. B. 1999. Resin-based defenses in conifers. Trends in plant science 4, 184–90.
Poinar, G.O. 1991. Hymenaea protera sp. n. (Leguminosae: Caesalpinioideae) from Dominican amber has African affinities. Experientia 47, 1075–82.
Poinar, G. O. & Hess, R. 1982. Ultrastructure of 40-million-year-old insect tissue. Science 215, 1241–42.
Poinar, G. O. & Hess, R. 1985. Preservative qualities of recent and fossil resins: electron micrograph studies on tissue preserved in Baltic amber. Journal of Baltic Studies 16, 222–30.
Poinar, G. O. & Poinar, R. 1999. The amber forest: a reconstruction of a vanished world. New York: Princeton University Press. 292 pp.
R Development Core Team. 2014. R: A language and environment for statistical computing, 2013. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
Ragazzi, E., Roghi, G., Giaretta, A. & Gianolla, P. 2003. Classification of amber based on thermal analysis. Thermochimica Acta 404, 4354.
Ross, A. J. 2010. Amber: The Natural Time Capsule. London, the Natural History Museum: Firefly Books Ltd. 112 pp.
Ross, A. J. & Sheridan, A. 2013. Amazing Amber. Edinburgh: NMS Enterprises. 48 pp.
Rust, J., Singh, H., Rana, R. S., McCann, T., Singh, L., Anderson, K., Sarkar, N., Nascimbene, P. C., Stebner, F. & Thomas, J. C. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences 107, 18360–65.
Saint Martin, J.-P., Saint Martin, S., Bolte, S. & Néraudeau, D. 2014. Spider web in Late Cretaceous French amber (Vendée): The contribution of 3D image microscopy. Comptes Rendus Palevol 13, 463–72.
Saupe, E .E., Pérez-De La Fuente, R., Selden, P. A., Delclòs, X., Tafforeau, P. & Soriano, C. 2012. New Orchestina Simon, 1882 (Araneae: Oonopidae) from Cretaceous ambers of Spain and France: first spiders described using phase-contrast X-ray synchrotron microtomography. Palaeontology 55, 127–43.
Schmidt, A. R., Jancke, S., Lindquist, E. E., Ragazzi, E., Roghi, G., Nascimbene, P. C., Schmidt, K., Wappler, T. & Grimaldi, D. A. 2012. Arthropods in amber from the Triassic Period. Proceedings of the National Academy of Sciences 109, 14796–801.
Serrano-Sánchez, M., Hegna, T. A., Schaaf, P., Pérez, L., Centeno-García, E. & Vega, F. J. 2015. The aquatic and semiaquatic biota in Miocene amber from the Campo La Granja mine (Chiapas, Mexico): paleoenvironmental implications. Journal of South American Earth Sciences 62, 243–56.
Sherratt, E., del Rosario Castañeda, M., Garwood, R. J., Mahler, D. L., Sanger, T. J., Herrel, A., De Queiroz, K. & Losos, J. B. 2015. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proceedings of the National Academy of Sciences 112, 9961–66.
Solórzano Kraemer, M. M., Kraemer, A. S., Stebner, F., Bickel, D. J. & Rust, J. 2015. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PloS one 10, e0118820.
Soriano, C., Archer, M., Azar, D., Creaser, P., Delclòs, X., Godthelp, H., Hand, S., Jones, A., Nel, A. & Néraudeau, D. 2010. Synchrotron X-ray imaging of inclusions in amber. Comptes Rendus Palevol 9, 361–68.
Stankiewicz, B. A., Poinar, H. N., Briggs, D. E. G., Evershed, R. P. & Poinar, G. O. 1998. Chemical preservation of plants and insects in natural resins. Proceedings of the Royal Society, London B: Biological Sciences 265, 641–47.
Trapp, S. & Croteau, R. 2001. Defensive resin biosynthesis in conifers. Annual review of plant biology 52, 689724.
Vavra, N. 2009. Amber, fossil resins, and copal: Contributions to the terminology of fossil plant resins. Denisia 26, 213–22.
Villagra, C. A., Meza, A. A. & Urzúa, A. 2014. Differences in arthropods found in flowers versus trapped in plant resins on Haplopappus platylepis Phil.(Asteraceae): Can the plant discriminate between pollinators and herbivores? Arthropod–Plant Interactions 8, 411–19.
Wang, B., Xia, F., Engel, M. S, Perrichot, V., Shi, G., Zhang, H., Chen, J., Jarzembowski, E. A., Wappler, T. & Rust, J. 2016. Debris-carrying camouflage among diverse lineages of Cretaceous insects. Science Advances 2, e1501918.
Weitschat, W. & Wichard, W. 2010. Baltic amber. In Penney, D. (ed.) Biodiversity of fossils in amber from the major world deposits, 80115. Manchester, UK: Siri Scientific Press. 304 pp.
Wolfe, A. P., Tappert, R., Muehlenbachs, K., Boudreau, M., Mckellar, R. C., Basinger, J. F. & Garrett, A. 2009. A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society, London B: Biological Sciences 276, 3403–12.
Wunderlich, J. 2004. Subrecent spiders (Araneae) in copal from Madagascar, with description of new species. Beiträge zur Araneologie 3, 1830–53.
Zschokke, S. 2003. Glue droplets in fossil spider webs. European Arachnology 2003, 367–74.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Earth and Environmental Science Transactions of The Royal Society of Edinburgh
  • ISSN: 1755-6910
  • EISSN: 1755-6929
  • URL: /core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

McCoy et al. supplementary material
Table S1

 PDF (113 KB)
113 KB
Supplementary materials

McCoy et al. supplementary material
Table S2

 PDF (78 KB)
78 KB
Supplementary materials

McCoy et al. supplementary material
McCoy et al. supplementary material 1

 PDF (141 KB)
141 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed