Skip to main content Accessibility help
×
×
Home

The sanukitoid series: magmatism at the Archaean–Proterozoic transition

  • Hervé Martin (a1) (a2) (a3), Jean-François Moyen (a4) and Robert Rapp (a4)
Abstract

A specific type of granitoid, referred to as sanukitoid (Shirey & Hanson 1984), was emplaced mainly across the Archaean–Proterozoic transition. The major and trace element composition of sanukitoids is intermediate between typical Archaean TTG and modern arc granitoids. However, among sanukitoids, two groups can be distinguished on the basis of the Ti content of the less differentiated rocks of the suite: high- and low-Ti sanukitoids. Melting experiments and petrogenetic modelling show that they may have formed by either (1) melting of mantle peridotite previously metasomatised by felsic melts of TTG composition, or (2) by reaction between TTG melts and mantle peridotite (assimilation). Rocks of the sanukitoid suite were emplaced at the Archaean–Proterozoic boundary, possibly marking the time when TTG-dominated granitoid magmatism changed to a more modern-style, arc-dominated magmatism. Consequently, the intermediate character of sanukitoids is not only compositional but chronological. The succession of granitoid magmatism with time is integrated in a plate tectonic model where it is linked to the thermal evolution of subduction zones, reflecting the progressive cooling of Earth: (1) the Archaean Earth’s heat production was high enough to allow the production of large amounts of TTG granitoids formed by partial melting of recycled basaltic crust (‘slab melting’); (2) at the end of the Archaean, due to the progressive cooling of the Earth, the extent of slab melting was reduced, resulting in lower melt:rock ratios. In such conditions the slab melts can be strongly contaminated by assimilation of mantle peridotite, thus giving rise to low-Ti sanukitoids. It is also possible that the slab melts were totally consumed in reactions with mantle peridotite, subsequent melting of this ‘melt-metasomatised mantle’ producing the high-Ti sanukitoid magmas; (3) after 2·5 Ga, Earth heat production was too low to allow slab melting, except in relatively rare geodynamic circumstances, and most modern arc magmas are produced by melting of the mantle wedge peridotite metasomatised by fluids from dehydration of the subducted slab. Of course, such changes did not take place exactly at the same time all over the world. The Archaean mechanisms coexisted with new processes over a relatively long time period, even if they were subordinate to the more modern processes.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Earth and Environmental Science Transactions of The Royal Society of Edinburgh
  • ISSN: 1755-6910
  • EISSN: 1755-6929
  • URL: /core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed