Hostname: page-component-7dd5485656-kp629 Total loading time: 0 Render date: 2025-10-31T15:28:58.768Z Has data issue: false hasContentIssue false

Tempo and mode of skull size evolution in Temnospondyli (Tetrapoda: Amphibia) and lineage diversification in the largest group of early tetrapods

Published online by Cambridge University Press:  20 October 2025

Marcello RUTA*
Affiliation:
Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK.
Florian WITZMANN
Affiliation:
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
Jozef KLEMBARA
Affiliation:
Laboratory of Evolutionary Biology, Department of Ecology, Comenius University Bratislava, Bratislava, Slovakia. Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
Nadia FRÖBISCH
Affiliation:
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
*
*Corresponding author E-mail: mruta@lincoln.ac.uk

Abstract

The evolution of skull length in temnospondyl amphibians is investigated using a variety of phylogenetic comparative methods applied to a time-calibrated supertree of 288 species. Temnospondyls expressed greater among-group than within-group variation in skull dimensions, pointing to a rapid occupation of distinct regions of trait space early in their history and during major episodes of clade diversification. Consistent with this pattern is the occurrence of regime shifts along basal branches in their phylogeny, especially within a diverse clade consisting of dendrerpetids, dvinosaurs, zatracheids, and dissorophoids. An additional conspicuous shift marks the separation between the two main clades of derived stereospondyls, the trematosauroids and the capitosauroids. Mean skull length differs significantly among taxonomic groups and across three main time intervals (Carboniferous; Permian; Mesozoic). However, the distribution of skull lengths across groups varies from nearly symmetrical to markedly skewed. Despite these differences, analyses of skewness show that the evolution of skull length conformed for the most part to expectations of a driven trend, with a sustained and directional pattern of change mirrored across separate lineages. Trait values and evolutionary rates tend to increase through time across the entire group, but individual lineages show contrasting patterns, revealing either no temporal trends or varying degrees of increase/decrease through time. Reduction in skull length features predominantly in terrestrial groups, such as amphibamid dissorophoids, although exceptions are observed. In contrast, most groups exhibiting an aquatic lifestyle tend to attain large or even gigantic sizes, particularly among stereospondyls.

Information

Type
Spontaneous Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

9. References

Adamowicz, S. J., Purvis, A. & Wills, M. A. 2008. Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proceedings of the National Academy of Sciences of the United States of America 105, 4786–91.CrossRefGoogle ScholarPubMed
Adams, D. C. 2014. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Systematic Biology 63, 166–77.CrossRefGoogle ScholarPubMed
Adler, D. & Kelly, S. T. 2021. vioplot: violin plot. R package version 0.3.6. https://cran.r-project.org/web/packages/vioplot/index.htmlGoogle Scholar
Ahlberg, P. E. 2019. Follow the footprints and mind the gaps: a new look at the origin of tetrapods. In Ruta, M., Ahlberg, P. E. & Smithson, T. R. (eds) Fossils, function and phylogeny: papers on early vertebrate evolution in honour of Professor Jennifer A. Clack, 115–37. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 109. Edinburgh: The RSE Scotland Foundation.Google Scholar
Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & Csáki, F. (eds) Second international symposium on information theory, 267–81. Budapest: Akadémiai Kiadó.Google Scholar
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science (New York, NY) 280, 731–34.CrossRefGoogle ScholarPubMed
Anderson, J. S. 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 50, 170–93.CrossRefGoogle Scholar
Anderson, J. S. 2008. Focal review: the origins of modern amphibians. Evolutionary Biology 35, 231–47.CrossRefGoogle Scholar
Anderson, J. S. & Bolt, J. R. 2013. New information on amphibamids (Tetrapoda, Temnospondyli) from Richards Spur (Fort Sill), Oklahoma. Journal of Vertebrate Paleontology 33, 553–67.CrossRefGoogle Scholar
Anderson, J. S., Henrici, A. C., Sumida, S. S., Martens, T. & Berman, D. S. 2008. Georgenthalia clavinasica, a new genus and species of dissorophoid temnospondyl from the early Permian of Germany, and the relationships of the family Amphibamidae. Journal of Vertebrate Paleontology 28, 6175.CrossRefGoogle Scholar
Angielczyk, K. D. & Ruta, M. 2012. The roots of amphibian morphospace: a geometric morphometric analysis of Palaeozoic temnospondyls. In Lombard, R. E., Anderson, J. S., Ruta, M. & Sumida, S. S. (eds) Studies in vertebrate paleobiology – essays in honor of John R. Bolt, 4058. Fieldiana: Life and Earth Sciences 5. Chicago: The Field Museum.Google Scholar
Arbez, T., Atkins, J. B. & Maddin, H. C. 2022. Cranial anatomy and systematics of Dendrerpeton cf. helogenes (Tetrapoda, Temnospondyli) from the Pennsylvanian of Joggins, revisited through micro-CT scanning. Papers in Palaeontology 8, e1421.CrossRefGoogle Scholar
Arbuckle, K., Bennett, C. M. & Speed, M. P. 2014. A simple measure of the strength of convergent evolution. Methods in Ecology and Evolution 5, 685–93.CrossRefGoogle Scholar
Bapst, D. W. 2012. Paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3, 803–07.CrossRefGoogle Scholar
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40, 331–51.CrossRefGoogle Scholar
Bault, V., Crônier, C. & Monnet, C. 2024. Coupling of taxonomic diversity and morphological disparity in Devonian trilobites? Historical Biology 36, 473–84.CrossRefGoogle Scholar
Bell, M. A. & Lloyd, G. T. 2015. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–89.CrossRefGoogle Scholar
Benjamini, Y. & Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57, 289300.CrossRefGoogle Scholar
Benson, R. B., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P. & Evans, D. C. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biology 12, e1001853.CrossRefGoogle ScholarPubMed
Benson, R. B. J., Godoy, P., Bronzati, M., Butler, R. J. & Gearty, W. 2022. Reconstructed evolutionary patterns for crocodile-line archosaurs demonstrate impact of failure to log-transform body size data. Communications Biology 5, 171.CrossRefGoogle ScholarPubMed
Benson, R. B. J. & Upchurch, P. 2013. Diversity trends in the establishment of terrestrial vertebrate ecosystems: interactions between spatial and temporal sampling biases. Geology 41, 4346.CrossRefGoogle Scholar
Benton, M. J. 2012. No gap in the Middle Permian record of terrestrial vertebrates. Geology 40, 339–42.CrossRefGoogle Scholar
Benton, M. J. 2021. The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Research 100, 261–89.CrossRefGoogle Scholar
Bestwick, J., Godoy, P. L., Maidment, S. C. R., Ezcurra, M. D., Wroe, M., Raven, T. J., Bonsor, J. A. & Butler, R. J. 2022. Relative skull size evolution in Mesozoic archosauromorphs: potential drivers and morphological uniqueness of erythrosuchid archosauriforms. Palaeontology 65, e12599.CrossRefGoogle Scholar
Blomberg, S. P., Garland, T. Jr & , A. R. & Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–45.CrossRefGoogle ScholarPubMed
Bokma, F., Godinot, M., Maridet, O., Ladevèze, S., Costeur, L., Solé, F., Gheerbrant, E., Peigné, S., Jacques, F. & Laurin, M. 2016. Testing for Depéret's rule (body size increase) in mammals using combined extinct and extant data. Systematic Biology 65, 98108.CrossRefGoogle ScholarPubMed
Boy, J. A. 1972. Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Perm, SW-Deutschland). Hessisches Landesamt für Bodenforschung 65, 1137.Google Scholar
Boy, J. A. 1988. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (? höchstes Karbon–Perm) 1: Sclerocephalus. Paläontologische Zeitschrift 62, 107–32.CrossRefGoogle Scholar
Boy, J. A. 1996. Ein neuer Eryopoide (Amphibia: Temnospondyli) aus dem saarpfälzischen Rotliegend (Unter-Perm; Südwest-Deutschland). Mainzer geowissenschaftliche Mitteilungen 25, 726.Google Scholar
Brinkworth, A., Green, E., Li, Y., Oyston, J., Ruta, M. & Wills, M. A. 2023. Bird clades with less complex appendicular skeletons tend to have higher species richness. Nature Communications 14, 5817.CrossRefGoogle ScholarPubMed
Brocklehurst, N. 2020. Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic uncertainty. Proceedings of the Royal Society B 287, 20200154.CrossRefGoogle ScholarPubMed
Brocklehurst, N., Ruta, M., Müller, J. & Fröbisch, J. 2015. Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study. Scientific Reports 5, e17104.CrossRefGoogle Scholar
Brusatte, S. L., Benton, M. J., Lloyd, G. T., Ruta, M. & Wang, S. C. 2011. The evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101, 367–82.CrossRefGoogle Scholar
Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science (New York, NY) 321, 1485–88.CrossRefGoogle ScholarPubMed
Burin, G., Park, T., James, T. D., Slater, G. J. & Cooper, N. 2023. The dynamic adaptive landscape of cetacean body size. Current Biology 33, 1787–94.CrossRefGoogle ScholarPubMed
Butler, M. A. & King, A. A. 2004. Phylogenetic comparative analysis: a modelling approach for adaptive evolution. The American Naturalist 164, 683–95.CrossRefGoogle ScholarPubMed
Butler, R. J. & Goswami, A. 2008. Body size evolution in Mesozoic birds: little evidence for Cope's rule. Journal of Evolutionary Biology 21, 1673–82.CrossRefGoogle ScholarPubMed
Caron, F. S. & Pie, M. R. 2024. The evolution of body size in terrestrial tetrapods. Evolutionary Biology 51, 283–94.CrossRefGoogle Scholar
Carroll, R. L. 2009. The rise of amphibians – 365 million years of evolution. Baltimore: Johns Hopkins University Press.CrossRefGoogle Scholar
Carter, A. M., Hsieh, S. T., Dodson, P. & Sallan, L. 2021. Early amphibians evolved distinct vertebrae for habitat invasions. PLoS ONE 16, e0251983.CrossRefGoogle ScholarPubMed
Castiglione, S., Serio, C., Mondanaro, A., Di Febbraro, M., Profico, A., Girardi, G. & Raia, P. 2019. Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of change with and within phylogenetic trees including extinct species. PLoS ONE 14, e0210101.CrossRefGoogle ScholarPubMed
Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M., Carotenuto, F., Di Febbraro, M., Profico, A., Tamagnini, D. & Raia, P. 2020. Ancestral state estimation with phylogenetic ridge regression. Evolutionary Biology 47, 220–32.CrossRefGoogle Scholar
Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro, M. & Raia, P. 2018. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods in Ecology and Evolution 9, 974–83.CrossRefGoogle Scholar
Cavin, L., Piuz, A., Ferrante, C. & Guinot, G. (2021). Giant Mesozoic coelacanths (Osteichthyes, Actinistia) reveal high body size disparity decoupled from taxic diversity. Scientific Reports 11, 11812.CrossRefGoogle ScholarPubMed
Clack, J. A. 2012. Gaining ground: the origin and evolution of tetrapods, 2nd edn. Bloomington: Indiana University Press.Google Scholar
Clack, J. A., Bennett, C. A., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. J., Marshall, J. E. A., Millward, D., Otoo, B. K. A., Reeves, E. J., Ross, A. J., Ruta, M., Smithson, K. Z., Smithson, T. R. & Walsh, S. A. 2016. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nature Ecology and Evolution 1, s41559-016-0002.CrossRefGoogle ScholarPubMed
Clack, J. A., Ruta, M., Milner, A. R., Marshall, J. E., Smithson, T. R. & Smithson, K. Z. 2019. Acherontiscus caledoniae: the earliest heterodont and durophagous tetrapod. Royal Society Open Science 6, e182087.CrossRefGoogle ScholarPubMed
Cooper, R. A. 1990. Interpretation of tectonically deformed fossils. New Zealand Journal of Geology and Geophysics 33, 321–32.CrossRefGoogle Scholar
Cox, C. B. & Hutchinson, P. 1991. Fishes and amphibians from the late Permian Pedra de Fogo Formation of Northern Brazil. Palaeontology 34, 561–73.Google Scholar
Damiani, R. J. 2001a. A systematic revision and phylogenetic analysis of Triassic mastodonsauroids (Temnospondyli: Stereospondyli). Zoological Journal of the Linnean Society 133, 379482.CrossRefGoogle Scholar
Damiani, R. J. 2001b. Cranial anatomy of the giant Middle Triassic temnospondyl Cherninia megarhina and a review of feeding in mastodonsaurids. Palaeontologia africana 37, 4152.Google Scholar
Eltink, E., Schoch, R. R. & Langer, M. C. 2019. Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli). Journal of Iberian Geology 45, 251–67.CrossRefGoogle Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist 125, 115.CrossRefGoogle Scholar
Fortuny, J., Gastou, S., Escuillié, F., Ranivoharimanana, L. & Steyer, J. S. 2018. A new extreme longirostrine temnospondyl from the Triassic of Madagascar: phylogenetic and palaeobiogeographical implications for trematosaurids. Journal of Systematic Palaeontology 16, 675–88.CrossRefGoogle Scholar
Fortuny, J., Marcé-Nogué, J., De Esteban-Trivigno, S., Gil, L. & Galobart, À 2011. Temnospondyli bite club: ecomorphological patterns of the most diverse group of early tetrapods. Journal of Evolutionary Biology 24, 2040–54.CrossRefGoogle ScholarPubMed
Fortuny, J., Marcé-Nogué, J., Steyer, J.-S., De Esteban-Trivigno, S., Gil, L. & Galobart, À 2016. Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli). Scientific Reports 4, 2104–11.Google Scholar
Fraas, E. 1913. Neue Labyrinthodonten aus der schwäbischen Trias. Palaeontographica 60, 275–94.Google Scholar
Freckleton, R. P. & Harvey, P. H. 2006. Detecting non-Brownian trait evolution in adaptive radiations. PLoS Biology 16, e0251983.Google Scholar
Freckleton, R. P., Phillimore, A. B. & Pagel, M. 2008. Relating traits to diversification: a simple test. The American Naturalist 172, 102–15.CrossRefGoogle ScholarPubMed
Fröbisch, N. B. & Schoch, R. R. 2009. The largest specimen of Apateon and the life history pathway of neoteny in the Palaeozoic temnospondyl family Branchiosauridae. Fossil Record 12, 8390.CrossRefGoogle Scholar
Garland, T. Jr, Dickerman, A. W., Janis, C. M. & Jones, J. A. 1993. Phylogenetic analysis of covariance by computer simulation. Systematic Biology 42, 265–92.CrossRefGoogle Scholar
Gee, B. M. & Jasinski, S. E. 2021. Description of the metoposaurid Anaschisma browni from the New Oxford Formation of Pennsylvania. Journal of Paleontology 95, 1061–78.CrossRefGoogle Scholar
Gee, B. M. & Reisz, R. R. 2020. A redescription of the late Carboniferous trematopid Actiobates peabodyi from Garnett, Kansas. The Anatomical Record 303, 2821–38.CrossRefGoogle ScholarPubMed
Ghosh, A., Mandal, A., Martín, N. & Pardo, L. 2016. Influence analysis of robust Wald-type tests. Journal of Multivariate Analysis 147, 102–26.CrossRefGoogle Scholar
Gittleman, J. L. & Kot, M. 1990. Adaptation: statistics and a null model for estimating phylogenetic effects. Systematic Zoology 39, 227–41.CrossRefGoogle Scholar
Godoy, P. L., Benson, R. B. J., Bronzati, M. & Butler, R. J. 2019. The multi-peak adaptive landscape of crocodylomorph body size evolution. BMC Evolutionary Biology 19, 167.CrossRefGoogle ScholarPubMed
Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society B 326, 119–57.Google ScholarPubMed
Griffin, C. T. & Angielczyk, K. D. 2019. The evolution of the dicynodont sacrum: constraint and innovation in the synapsid axial column. Paleobiology 45, 201–20.CrossRefGoogle Scholar
Grossnickle, D. M., Sadier, A., Patterson, E., Cortés-Viruet, N. N., Jiménez-Rivera, S. M., Sears, K. E. & Santana, S. E. 2024. The hierarchical radiation of phyllostomid bats as revealed by adaptive molar morphology. Current Biology 34, 1284–94.CrossRefGoogle Scholar
Gubin, Y. M. 1980. New Permian dissorophids of the Ural forelands. Paleontologicheskii Zhurnal 3, 8290 [In Russian].Google Scholar
Guillerme, T. 2018. Disprity: a modular R package for measuring disparity. Methods in Ecology and Evolution 9, 1755–63.CrossRefGoogle Scholar
Hanken, J. & Hall, B. K. 1993. The skull, volume 3: functional and evolutionary mechanisms. Chicago: University of Chicago Press.Google Scholar
Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–51.CrossRefGoogle ScholarPubMed
Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, J. A. I. I., Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T. & Mooers, A. O. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–96.Google ScholarPubMed
Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science (New York, NY) 301, 961–64.CrossRefGoogle ScholarPubMed
Hart, L. J., Campione, N. E. & McCurry, M. R. 2022a. On the estimation of body mass in temnospondyls: a case study using the large-bodied Eryops and Paracyclotosaurus. Palaeontology 65, e12629.CrossRefGoogle Scholar
Hart, L. J., Gee, B. M., Smith, P. M. & McCurry, M. R. 2022b. A new chigutisaurid (Brachyopoidea, Temnospondyli) with soft tissue preservation from the Triassic Sydney Basin, New South Wales, Australia. Journal of Vertebrate Paleontology 42, e2232829.CrossRefGoogle Scholar
Haughton, S. H. 1925. Descriptive catalogue of the Amphibia of the Karoo system. Annals of the South African Museum 22, 227–61.Google Scholar
Holmes, R. B., Carroll, R. L. & Reisz, R. R. 1998. The first articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the Lower Pennsylvanian locality of Joggins, Nova Scotia, and a review of its relationships. Journal of Vertebrate Paleontology 18, 6479.CrossRefGoogle Scholar
Hopkins, M. J. 2013. Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. Journal of Evolutionary Biology 26, 1665–76.CrossRefGoogle ScholarPubMed
Huang, E. J., Wilson, J. D., Bhullar, B. A. S. & Bever, G. S. 2024. High-precision body mass predictors for small mammals: a case study in the Mesozoic. Palaeontology 67, e12692.CrossRefGoogle Scholar
Janis, C. M. & Keller, J. C. 2001. Modes of ventilation in early tetrapods: costal aspiration as a key feature of amniotes. Acta Palaeontologica Polonica 46, 137–70.Google Scholar
Jenkins, F. A. Jr, Shubin, N. H., Gatesy, S. M. & Warren, A. 2008. Gerrothorax pulcherrimus from the Upper Triassic Fleming Fjord Formation of East Greenland and a reassessment of head lifting in temnospondyl feeding. Journal of Vertebrate Paleontology 28, 935–50.CrossRefGoogle Scholar
Jombart, T. & Dray, S. 2010. adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics (Oxford, England) 26, 1907–09.Google Scholar
Kalita, S., Teschner, E. M., Sander, P. M. & Konietzko-Meier, D. 2022. To be or not to be heavier: the role of dermal bones in the buoyancy of the Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis. Journal of Anatomy 241, 1459–76.CrossRefGoogle ScholarPubMed
Kathe, W. 1999. Comparative morphology and functional interpretation of the sutures in the dermal skull roof of temnospondyl amphibians. Zoological Journal of the Linnean Society 126, 139.CrossRefGoogle Scholar
Klembara, J. & Steyer, J. S. 2012. A new species of Sclerocephalus (Temnospondyli: Stereospondylomorpha) from the early Permian of the Boskovice Basin (Czech Republic). Journal of Paleontology 86, 302–10.CrossRefGoogle Scholar
Kligman, B. T., Gee, B. M., Marsh, A. D., Nesbitt, S. J., Smith, M. E., Parker, W. G. & Stocker, M. R. 2023. Triassic stem caecilian supports dissorophoid origin of living amphibians. Nature 614, 102–07.CrossRefGoogle ScholarPubMed
Konietzko-Meier, D., Gruntmejer, K., Marcé-Nogué, J., Bodzioch, A. & Fortuny, J. 2018. Merging cranial histology and 3D-computational biomechanics: a review of the feeding ecology of a Late Triassic temnospondyl amphibian. PeerJ 6, e4426.CrossRefGoogle ScholarPubMed
Kratsch, C. & McHardy, A. C. 2014. Ridgerace: ridge regression for continuous ancestral character estimation on phylogenetic trees. Bioinformatics (Oxford, England) 30, i527–33.Google ScholarPubMed
Lautenschlager, S., Witzmann, F. & Werneburg, I. 2016. Palate anatomy and morphofunctional aspects of interpterygoid vacuities in temnospondyl cranial evolution. The Science of Nature 103, 79.CrossRefGoogle ScholarPubMed
Lehman, J.-P. 1961. Les stégocéphales du Trias de Madagascar. Annales de Paléontologie 47, 109–54.Google Scholar
Li, Y., Brinkworth, A., Green, E., Oyston, J., Wills, M. A. & Ruta, M. 2023. Divergent vertebral formulae shape the evolution of axial complexity in mammals. Nature Ecology and Evolution 7, 367–81.CrossRefGoogle ScholarPubMed
Liu, J. 2018. Osteology of the large dissorophid temnospondyl Anakamacops petrolicus from the Guadalupian Dashankou Fauna of China. Journal of Vertebrate Paleontology 38, e1513407.CrossRefGoogle Scholar
Liu, J., Angielczyk, K. D. & Abdala, F. 2021. Permo-Triassic tetrapods and their climate implications. Global and Planetary Change 205, 103618.CrossRefGoogle Scholar
Lloyd, G. T. & Slater, G. J. 2021. A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses. Systematic Biology 70, 922–39.CrossRefGoogle ScholarPubMed
Lloyd, G. T., Wang, S. C. & Brusatte, S. L. 2012. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66, 330–48.CrossRefGoogle ScholarPubMed
Lucas, S. G. 2004. A global hiatus in the Middle Permian tetrapod fossil record. Stratigraphy 1, 4764.CrossRefGoogle Scholar
Lucas, S. G. 2013. No gap in the Middle Permian record of terrestrial vertebrates: comment. Geology 41, e293.CrossRefGoogle Scholar
MacIver, M. A., Schmitz, L., Mugan, U., Murphey, T. D. & Mobley, C. D. 2017. Massive increase in visual range preceded the origin of terrestrial vertebrates. Proceedings of the National Academy of Sciences of the United States of America 114, E2375–84.Google ScholarPubMed
Marjanović, D. & Laurin, M. 2019. Phylogeny of Palaeozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e4426.CrossRefGoogle Scholar
Marjanović, D., Maddin, H. C., Olori, J. C. & Laurin, M. 2019. The new problem of Chinlestegophis and the origin of caecilians (Amphibia, Gymnophionomorpha) is highly sensitive to old problems of sampling and character construction. Fossil Record 27, 5594.CrossRefGoogle Scholar
Marsicano, C. A., Latimer, E., Rubidge, B. & Smith, R. M. 2017. The Rhinesuchidae and early history of the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic. Zoological Journal of the Linnean Society 181, 357–84.Google Scholar
Marzola, M., Mateus, O., Shubin, N. H. & Clemmensen, L. B. 2017. Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology 37, e1303501.CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48, 1747–63.CrossRefGoogle ScholarPubMed
Milner, A. R. 1980. The temnospondyl amphibian Dendrerpeton from the Upper Carboniferous of Ireland. Palaeontology 23, 125–41.Google Scholar
Milner, A. R. 1988. The relationships and origins of living amphibians. In Benton, M. J. (ed.) The phylogeny and classification of the tetrapods, volume 1: amphibians, reptiles, birds, 59102. Oxford: Clarendon Press.Google Scholar
Milner, A. R. 1990. The radiations of temnospondyl amphibians. In Taylor, P. D. & Larwood, G. P. (eds) Major evolutionary radiations, 321–49. Oxford: Clarendon Press.Google Scholar
Milner, A. R. 1993. The Palaeozoic relatives of lissamphibians. In Cannatella, D. C. & Hillis, D. M. (eds) Amphibian relationships: phylogenetic analysis of morphology and molecules, 827. Herpetological Monographs 7. Lawrence: Allen Press.Google Scholar
Milner, A. R. 1994. Late Triassic and Jurassic amphibians: fossil record and phylogeny. In Fraser, N. C. & Sues, H.-D. (eds) In the shadow of the dinosaurs: early Mesozoic tetrapods, 522. Cambridge: Cambridge University Press.Google Scholar
Milner, A. R. 1996. A revision of the temnospondyl amphibians from the Upper Carboniferous of Joggins, Nova Scotia. In Milner, A. R., (ed.) Studies on Carboniferous and Permian vertebrates, 81103. Special Papers in Palaeontology 52. Edinburgh: Royal Society of Edinburgh.Google Scholar
Milner, A. R. & Sequeira, S. E. K. 1994. The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian, Scotland. In Rolfe, W. D. I., Clarkson, E. N. K. & Panchen, A. L. (eds) Volcanism and early terrestrial biota, 331–61. Transactions of the Royal Society of Edinburgh, Earth Sciences 84. London: The Palaeontological Association.Google Scholar
Milner, A. R. & Sequeira, S. E. K. 1998. A cochleosaurid temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio, USA. Zoological Journal of the Linnean Society 122, 261–90.CrossRefGoogle Scholar
Missagia, R. V., Casali, D. M., Patterson, B. D. & Perini, F. A. 2023. Decoupled patterns of diversity and disparity characterize an ecologically specialized lineage of neotropical cricetids. Evolutionary Biology 50, 181–96.CrossRefGoogle Scholar
Mundry, R. 2014. Chapter 6: Statistical issues and assumptions of phylogenetic generalized least squares. In Garamszegi, L. X. (ed.) Modern phylogenetic comparative methods and their application in evolutionary biology, 131–53. Heidelberg: Springer-Verlag Berlin.CrossRefGoogle Scholar
Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K. & Thuiller, W. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3, 743–56.CrossRefGoogle Scholar
Murrell, D. J. 2018. A global envelope test to detect non-random bursts of trait evolution. Methods in Ecology and Evolution 9, 1739–48.CrossRefGoogle Scholar
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–84.CrossRefGoogle ScholarPubMed
Paradis, E. & Schliep, K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics (Oxford, England) 35, 526–28.Google ScholarPubMed
Pardo, J. D., Small, B. J. & Huttenlocker, A. K. 2017. Stem caecilian from the Triassic of Colorado sheds light on the origin of Lissamphibia. Proceedings of the National Academy of Sciences of the United States of America 114, E5389–95.Google ScholarPubMed
Pardo, J. D., Small, B. J., Milner, A. R. & Huttenlocker, A. K. 2019. Carboniferous–Permian climate change constrained early land vertebrate radiations. Nature Ecology and Evolution 3, 200–06.CrossRefGoogle ScholarPubMed
Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., Alfaro, M. E. & Harmon, L. J. 2014a. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics (Oxford, England) 30, 2216–18.Google Scholar
Pennell, M. W., Harmon, L. J. & Uyeda, J. C. 2014b. Is there room for punctuated equilibrium in macroevolution? Trends in Ecology and Evolution 29, 2332.CrossRefGoogle Scholar
Pérez-Ben, C. M., Báez, A. M. & Schoch, R. R. 2020. Morphological evolution of the skull roof in temnospondyl amphibians mirrors conservative ontogenetic patterns. Zoological Journal of the Linnean Society 188, 163–79.CrossRefGoogle Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Pincheira-Donoso, D., Harvey, L. P. & Ruta, M. 2015. What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation. BMC Evolutionary Biology 15, e153.CrossRefGoogle ScholarPubMed
Pinheiro, F. L., Eltnik, E., Paes-Neto, V. D., Machado, A. F., Simões, T. R. & Pierce, S. E. 2024. Interrelationships among Early Triassic faunas of Western Gondwana and Laurasia as illuminated by a new South American benthosuchid temnospondyl. Anatomical Record 307, 726–43.CrossRefGoogle ScholarPubMed
Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. & R Core Team. 2021. nlme: Linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlmeGoogle Scholar
Raia, P. & Fortelius, M. 2013. Cope's law of the unspecialized, Cope's rule, and weak directionality in evolution. Evolutionary Ecology Research 15, 747–56.Google Scholar
Reisz, R. R., Schoch, R. R. & Anderson, J. S. 2009. The armoured dissorophid Cacops from the Early Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians. Naturwissenschaften 96, 789–96.CrossRefGoogle ScholarPubMed
Revell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology. Methods in Ecology and Evolution 3, 217–23.CrossRefGoogle Scholar
Revell, L. J. 2013. Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution 4, 754–59.CrossRefGoogle Scholar
Revell, L. J., Harmon, L. J. & Collar, D. C. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57, 591601.CrossRefGoogle ScholarPubMed
Riabinin, A. N. 1930. A labyrinthodont stegocephalian Wetlugasaurus angustifrons nov. gen., nov. sp from the Lower Triassic of Vetluga-Land in northern Russia. Annuaire dela Société Paléontologique de Russie 8, 4976.Google Scholar
Romer, A. S. & Witter, R. V. 1942. Edops, a primitive rhachitomous amphibian from the Texas red beds. Journal of Geology 50, 925–60.CrossRefGoogle Scholar
Roy, S., Brännström, Å & Dieckmann, U. 2024. Ecological determinants of Cope's rule and its inverse. Communications Biology 7, 38.CrossRefGoogle ScholarPubMed
Rushton, A. W. A. & Smith, M. 1993. Retrodeformation of fossils – a simple technique. Palaeontology 36, 927–30.Google Scholar
Ruta, M. 2009. Patterns of morphological evolution in major groups of Palaeozoic Temnospondyli (Amphibia: Tetrapoda). In Ruta, M., Clack, J. A. & Milner, A. C. (eds) Patterns and processes in early vertebrate evolution, 91120. Special Papers in Palaeontology 81. Oxford: Wiley-Blackwell.Google Scholar
Ruta, M., Angielczyk, K. D., Fröbisch, J. & Benton, M. J. 2013. Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proceedings of the Royal Society B 280, e20131071.CrossRefGoogle ScholarPubMed
Ruta, M. & Bartels, C. 1998. A redescription of the anomalocystitid mitrate Rhenocystis latipedunculata from the Lower Devonian of Germany. Palaeontology 41, 771806.Google Scholar
Ruta, M. & Benton, M. J. 2008. Calibrated diversity, tree topology and the mother of mass extinctions: the lesson of temnospondyls. Palaeontology 51, 1261–88.CrossRefGoogle Scholar
Ruta, M. & Bolt, J. R. 2006. A reassessment of the temnospondyl amphibian Perryella olsoni from the Lower Permian of Oklahoma. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 97, 113–65.CrossRefGoogle Scholar
Ruta, M., Cisneros, J. C., Liebrecht, T., Tsuji, L. A. & Müller, J. 2011. Amniotes through major biological crises: faunal turnover among parareptiles and the end-Permian mass extinction. Palaeontology 54, 1117–37.CrossRefGoogle Scholar
Ruta, M. & Coates, M. I. 2007. Dates, nodes and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Palaeontology 5, 69122.CrossRefGoogle Scholar
Ruta, M., Krieger, J., Angielczyk, K. D. & Wills, M. A. 2019. The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates. In Ruta, M., Ahlberg, P. E. & Smithson, T. R. (eds) Fossils, function and phylogeny: papers on early vertebrate evolution in honour of Professor Jennifer A. Clack, 351–69. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 109. Edinburgh: The RSE Scotland Foundation.Google Scholar
Ruta, M., Wagner, P. J. & Coates, M. I. 2006. Evolutionary patterns in early tetrapods, I: rapid initial diversification followed by decrease in rates of character change. Proceedings of the Royal Society B 273, 2107–11.CrossRefGoogle ScholarPubMed
Sahney, S. & Benton, M. J. 2008. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B 275, 759–65.CrossRefGoogle ScholarPubMed
Sawin, H. J. 1941. The cranial anatomy of Eryops megacephalus. Bulletin of the Museum of Comparative Zoology at Harvard College 88, 407–63.Google Scholar
Schoch, R. R. 1999. Comparative osteology of Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie) 278, 1175.Google Scholar
Schoch, R. R. 2009. Evolution of life cycles in early amphibians. Annual Review of Earth and Planetary Sciences 37, 135–62.CrossRefGoogle Scholar
Schoch, R. R. 2013a. How body size and development biased the direction of evolution in early amphibians. Historical Biology 25, 155–65.CrossRefGoogle Scholar
Schoch, R. R. 2013b. The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology 11, 673705.CrossRefGoogle Scholar
Schoch, R. R. 2014a. Amphibian evolution: the life of early land vertebrates. Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
Schoch, R. R. 2014b. Life cycles, plasticity and palaeoecology in temnospondyl amphibians. Palaeontology 57, 517–29.CrossRefGoogle Scholar
Schoch, R. R. 2019. The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls. Journal of Paleontology 93, 137–56.CrossRefGoogle Scholar
Schoch, R. R. & Fröbisch, N. 2006. Metamorphosis and neoteny: alternative pathways in an extinct amphibian clade. Evolution 60, 1467–75.CrossRefGoogle Scholar
Schoch, R. R., Henrici, A. C. & Hook, R. W. 2021. A new dissorophoid temnospondyl from the Allegheny Group (late Carboniferous) of five points, Mahoning County, Ohio (USA). Journal of Paleontology 95, 638–51.CrossRefGoogle Scholar
Schoch, R. R. & Milner, A. R. 2000. Handbuch der Paläoherpetologie, Teil 3B, Stereospondyli. Munchen: Verlag Dr Friedrich Pfeil.Google Scholar
Schoch, R. R. & Milner, A. R. 2004. Structure and implications of theories on the origin of lissamphibians. In Arratia, G., Wilson, M. V. H. & Cloutier, R. (eds) Recent advances in the origin and early radiation of vertebrates: honoring Hans-Peter Schultze, 345–77. Munchen: Verlag Dr Friedrich Pfeil.Google Scholar
Schoch, R. R. & Milner, A. R. 2008. The intrarelationships and evolutionary history of the temnospondyl family Branchiosauridae. Journal of Systematic Palaeontology 6, 409–31.CrossRefGoogle Scholar
Schoch, R. R. & Milner, A. R. 2014. Handbook of paleoherpetology, part 3A2: Temnospondyli I. Munich: Verlag Dr Friedrich Pfeil.Google Scholar
Schoch, R. R. & Milner, A. R. 2021. Morphology and relationships of the temnospondyl Macrerpeton huxleyi from the Pennsylvanian of Linton, Ohio (USA). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 2021, 7798.CrossRefGoogle Scholar
Schoch, R. R., Milner, A. R. & Witzmann, F. 2014. Skull morphology and phylogenetic relationships of a new Middle Triassic plagiosaurid temnospondyl from Germany, and the evolution of plagiosaurid eyes. Palaeontology 57, 1045–58.CrossRefGoogle Scholar
Schoch, R. R. & Rubidge, B. S. 2005. The amphibamid Micropholis from the Lystrosaurus assemblage Zone of South Africa. Journal of Vertebrate Paleontology 25, 502–22.CrossRefGoogle Scholar
Schoch, R. R. & Sues, H. D. 2022. The dissorophoid temnospondyl Parioxys ferricolus from the early Permian (Cisuralian) of Texas. Journal of Paleontology 96, 950–60.CrossRefGoogle Scholar
Schoch, R. R. & Witzmann, F. 2009. Osteology and relationships of the temnospondyl genus Sclerocephalus. Zoological Journal of the Linnean Society 157, 135–68.CrossRefGoogle Scholar
Schoch, R. R. & Witzmann, F. 2024. The evolution of larvae in temnospondyls and the stepwise origin of amphibian metamorphosis. Biological Reviews 99, 1613–37.CrossRefGoogle ScholarPubMed
Schoch, R. R., Werneburg, R. & Voigt, S. 2020. A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proceedings of the National Academy of Sciences of the United States of America 117, 11584–88.CrossRefGoogle ScholarPubMed
Sequeira, S. E. K. & Milner, A. R. 1993. The temnospondyl amphibian Capetus from the Upper Carboniferous of Nýřany, Czech Republic. Palaeontology 36, 657–80.Google Scholar
Shipley, A. E., Elsler, A., Singh, S. A., Stubbs, T. L. & Benton, M. J. 2024. Locomotion and the early Mesozoic success of Archosauromorpha. Royal Society Open Science 11, 231495.CrossRefGoogle ScholarPubMed
Shishkin, M. A., Rubidge, B. S. & Kitching, J. W. 1996. A new lydekkerinid (Amphibia, Temnospondyli) from the lower Triassic of South Africa: implications for evolution of the early capitosauroid cranial pattern. Philosophical Transactions of the Royal Society B 351, 1635–59.Google Scholar
Sigurdsen, T. & Green, D. M. 2011. The origin of modern amphibians: a re-evaluation. Zoological Journal of the Linnean Society 162, 457–69.CrossRefGoogle Scholar
Slater, G. J. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous–Palaeogene boundary. Methods in Ecology and Evolution 4, 734–44.CrossRefGoogle Scholar
Slater, G. J. & Pennell, M. W. 2014. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Systematic Biology 63, 293308.CrossRefGoogle ScholarPubMed
Slater, G. J., Price, S. A., Santini, F. & Alfaro, M. E. 2010. Diversity vs disparity and the evolution of modern cetaceans. Proceedings of the Royal Society B 277, 3097–104.CrossRefGoogle Scholar
Smith, A. B. 1994. Systematics and the fossil record. Oxford: Blackwell Scientific Publications.CrossRefGoogle Scholar
Smith, F. A. & Lyons, S. K. 2013. Animal body size: linking pattern and process across space, time, and taxonomic group. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Smithson, T. R., Browne, M. A., Davies, S. J., Marshall, J. E., Millward, D., Walsh, S. A. & Clack, J. A. 2017. A new Mississippian tetrapod from Fife, Scotland, and its environmental context. Papers in Palaeontology 3, 547–57.CrossRefGoogle Scholar
Smithson, T. R., Ruta, M. & Clack, J. A. 2024. On Ossirarus kierani, a stem tetrapod from the Tournaisian of Burnmouth, Berwickshire, Scotland, and the phylogeny of early tetrapods. Fossil Record 27, 333–52.CrossRefGoogle Scholar
Sookias, R. B., Butler, R. J. & Benson, R. B. 2012. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proceedings of the Royal Society B 279, 2180–87.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 1973, 126.CrossRefGoogle Scholar
Stayton, C. T. & Ruta, M. 2006. Geometric morphometrics of the skull roof of stereospondyls (Amphibia: Temnospondyli). Palaeontology 49, 307–37.CrossRefGoogle Scholar
Steyer, J. S. & Damiani, R. 2005. A giant brachyopoid temnospondyl from the Upper Triassic or Lower Jurassic of Lesotho. Bulletin de la Société géologique de France 176, 243–48.CrossRefGoogle Scholar
Stockdale, M. T. & Benton, M. J. 2021. Environmental drivers of body size evolution in crocodile-line archosaurs. Communications Biology 4, 38.CrossRefGoogle ScholarPubMed
Stockdale, M. T. & Benton, M. J. 2022. Reply to: ‘Reconstructed evolutionary patterns from crocodile-line archosaurs demonstrate the impact of failure to log-transform body size’. Communications Biology 5, 170.CrossRefGoogle ScholarPubMed
Symonds, M. R. E. & Blomberg, S. P. 2014. Chapter 5: a primer on phylogenetic generalised least squares. In Garamszegi, L. X. (ed.) Modern phylogenetic comparative methods and their application in evolutionary biology, 105–30. Heidelberg: Springer-Verlag Berlin.CrossRefGoogle Scholar
Tarailo, D. A. 2018. Taxonomic and ecomorphological diversity of temnospondyl amphiboans across the Permian–Triassic boundary in the Karoo Basin (South Africa). Journal of Morphology 279, 1840–48.CrossRefGoogle ScholarPubMed
Uyeda, J. C. & Harmon, L. J. 2014. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Systematic Biology 63, 902–18.CrossRefGoogle ScholarPubMed
Uyeda, J. C., Zenil-Ferguson, R. & Pennell, M. W. 2018. Rethinking phylogenetic comparative methods. Systematic Biology 67, 1091–109.CrossRefGoogle ScholarPubMed
Venables, W. N. & Ripley, B. D. 2002. Modern applied statistics with S, 4th edn. New York: Springer.CrossRefGoogle Scholar
Wagstaff, B. E., Gallagher, S. J., Hall, W. M., Korasidis, V. A., Rich, T. H., Seegets-Villiers, D. E. & Vickers-Rich, P. A. 2020. Palynological-age determination of Early Cretaceous vertebrate-bearing beds along the south Victorian coast of Australia, with implications for the spore-pollen biostratigraphy of the region. Alcheringa 44, 460–74.CrossRefGoogle Scholar
Wan, J., Foster, W. J., Tian, L., Stubbs, T. L., Benton, M. J., Qiu, X. & Yuan, A. 2021. Decoupling of morphological disparity and taxonomic diversity during the end-Permian mass extinction. Paleobiology 47, 402–17.CrossRefGoogle Scholar
Wang, S. C. 2001. Quantifying passive and driven large–scale evolutionary trends. Evolution 55, 849–58.CrossRefGoogle ScholarPubMed
Warren, A. 1998. Karoo tupilakosaurid: a relict from Gondwana. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 89, 145–60.CrossRefGoogle Scholar
Warren, A. A. & Hutchinson, M. N. 1983. The last labyrinthodont? A new brachyopoid (Amphibia, Temnospondyli) from the early Jurassic Evergreen Formation of Queensland, Australia. Philosophical Transactions of the Royal Society B 303, 162.Google Scholar
Warren, A. A. & Hutchinson, M. N. 1990. Lapillopsis, a new genus of temnospondyl amphibians from the Early Triassic of Queensland. Alcheringa 14, 149–58.CrossRefGoogle Scholar
Warren, A. & Marsicano, C. 2000. A phylogeny of the Brachyopoidea (Temnospondyli, Stereospondyli). Journal of Vertebrate Paleontology 20, 462–83.CrossRefGoogle Scholar
Warren, A., Rich, T. H. & Vickers-Rich, P. 1997. The last See gets labyrinthodonts? Palaeontographica Abt. A 247, 124.CrossRefGoogle Scholar
Warren, A. & Snell, N. 1991. The postcranial skeleton of Mesozoic temnospondyl amphibians: a review. Alcheringa 15, 4364.CrossRefGoogle Scholar
Wellman, H. W. 1962. A graphical method for analysing fossil distortion caused by tectonic deformation. Geological Magazine 99, 348–53.CrossRefGoogle Scholar
Werneburg, R. 1989. Labyrinthodontier (Amphibia) aus dem Oberkarbon und Unterperm Mitteleuropas – Systematik, Phylogenie und Biostratigraphie. Freiberger Forschungshefte C 436, 757.Google Scholar
Werneburg, R. 2009. The Permotriassic branchiosaurid Tungussogyrinus Efremov, 1939 (Temnospondyli, Dissorophoidea) from Siberia restudied. Fossil Record 12, 105–20.CrossRefGoogle Scholar
Werneburg, R., Schneider, J. W., Štamberg, S., Legler, B. & Schoch, R. R. 2022. A new amphibamiform (Temnospondyli: Branchiosauridae) from the lower Permian of the Czech Boskovice Basin. Journal of Vertebrate Paleontology 42, e2231994.CrossRefGoogle Scholar
Werneburg, R., Witzmann, F., Rinehart, L., Fischer, J. & Voigt, S. 2023. A new eryopid temnospondyl from the Carboniferous–Permian boundary of Germany. Journal of Paleontology 97, 1251–81.CrossRefGoogle Scholar
Wiman, C. 1914. Über die Stegocephalen aus der Trias Spitzbergens. Bulletin of the Geological Institute of the University of Uppsala 13, 134.Google Scholar
Witzmann, F. 2006a. Cranial morphology and ontogeny of the Permo–Carboniferous temnospondyl Archegosaurus decheni Goldfuss, 1847 from the Saar-Nahe Basin, Germany. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 96, 131–62.CrossRefGoogle Scholar
Witzmann, F. 2006b. Developmental patterns and ossification sequence in the Permo–Carboniferous temnospondyl Archegosaurus decheni (Saar-Nahe Basin, Germany). Journal of Vertebrate Paleontology 26, 717.CrossRefGoogle Scholar
Witzmann, F. 2016. CO2-metabolism in early tetrapods revisited: inferences from osteological correlates of gills, skin and lung ventilation in the fossil record. Lethaia 49, 492506.CrossRefGoogle Scholar
Witzmann, F. & Ruta, M. 2019. Evolutionary changes in the orbits and palatal openings of early tetrapods, with emphasis on temnospondyls. In Ruta, M., Ahlberg, P. E. & Smithson, T. R. (eds) Fossils, function and phylogeny: papers on early vertebrate evolution in honour of Professor Jennifer A. Clack, 333–50. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 109. Edinburgh: The RSE Scotland Foundation.Google Scholar
Witzmann, F. & Schoch, R. R. 2006. The postcranium of Archegosaurus decheni, and a phylogenetic analysis of temnospondyl postcrania. Palaeontology 49, 1211–35.CrossRefGoogle Scholar
Witzmann, F. & Schoch, R. R. 2013. Reconstruction of cranial and hyobranchial muscles in the Triassic temnospondyl Gerrothorax provides evidence for akinetic suction feeding. Journal of Morphology 274, 525–42.CrossRefGoogle ScholarPubMed
Witzmann, F. & Schoch, R. R. 2022. The larval brachyopid Platycepsion wilkinsoni from the Triassic of New South Wales provides insight into the stereospondyl life cycle. Journal of Paleontology 96, 1447–60.CrossRefGoogle Scholar
Witzmann, F., Scholz, H. & Ruta, M. 2009. Morphospace occupation of temnospondyl growth series: a geometric morphometric approach. Alcheringa 33, 237–55.CrossRefGoogle Scholar
Witzmann, F. & Werneburg, I. 2017. The palatal interpterygoid vacuities of temnospondyls and the implications for the associated eye- and jaw musculature. The Anatomical Record 300, 1240–69.CrossRefGoogle ScholarPubMed
Woodward, H. N., Aubier, P., Sena, M. V. A. D. & Cubo, J. 2024. Evaluating extinct pseudosuchian body mass estimates using a femur volume-based model. The Anatomical Record 2024, 10.1002/ar.25452.Google Scholar
Yates, A. M. 1999. The Lapillopsidae: a new family of small temnospondyls from the Early Triassic of Australia. Journal of Vertebrate Paleontology 19, 302–20.CrossRefGoogle Scholar
Yates, A. M. 2000. A new tiny rhytidosteid (Temnospondyli: Stereospondyli) from the Early Triassic of Australia and the possibility of hidden temnospondyl diversity. Journal of Vertebrate Paleontology 20, 484–89.CrossRefGoogle Scholar
Yates, A. M. & Warren, A. A. 2000. The phylogeny of the ‘higher’ temnospondyls (Vertebrata, Choanata) and its implications for the monophyly and origins of the Stereospondyli. Zoological Journal of the Linnean Society 128, 77121.CrossRefGoogle Scholar
Supplementary material: File

Ruta et al. supplementary material

Ruta et al. supplementary material
Download Ruta et al. supplementary material(File)
File 17.5 MB