Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-06T09:05:54.636Z Has data issue: false hasContentIssue false

Triassic “Gondwana” granites of the Gastre district, North Patagonian Massif

Published online by Cambridge University Press:  03 November 2011

C. W. Rapela
Affiliation:
C. W. Rapela, Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, 644 Calle No. 1, 1900 La Plata, Argentina
R. J. Pankhurst
Affiliation:
R. J. Pankhurst and S. M. Harrison, British Antarctic Survey, c/o NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, U.K.
S. M. Harrison
Affiliation:
R. J. Pankhurst and S. M. Harrison, British Antarctic Survey, c/o NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, U.K.

Abstract

Granites of the Batholith of Central Patagonia were emplaced into late Precambrian metamorphic basement rocks and Palaeozoic orthogneisses (here dated by Rb–Sr whole-rock errorchrons at 346 ±35 Ma and 267 ±27 Ma), and are in fault-contact with younger volcanic rocks, mostly andesites. Two main suites of granites are recognised: both are much younger than their previously-supposed Late Palaeozoic age. The Gastre Suite is composed predominantly of hornblende-biotite granodiorite and monzogranite, often slightly foliated, and has yielded a Rb-Sr whole-rock isochron age of 220 ±3 Ma. The Lipetrén Suite includes biotite monzogranite and leucogranite, grading into quartz-feldspar porphyries and felsites, and has been dated at 208 ±1 Ma. A minor granodioritic unit yields an apparently Middle Jurassic age of 172 ±15 Ma. Textural evidence and hornblende geobarometry confirm that these are high-level sub-volcanic intrusions. Metaluminous compositions are common in the Gastre Suite, but are subordinate to highly siliceous (>70% SiO2) and peraluminous varieties in the Lipetrén Suite. Despite this compositional bias, the granites are almost entirely calcalkaline and I-type, and have volcanic-arc rather than intraplate or collisional trace element characteristics. Initial 87Sr/86Sr ratios of 0·706 and –2·5 are also relatively primitive and are thought to indicate a juvenile crustal contribution (Nd “depleted mantle” model ages are less than 1,000 Ma).

The Triassic “Gondwana” magmatic episode is thus not an expression of Permo-Triassic collision of an allochthonous Patagonian terrane with the rest of southern S America, but may be related to the initial stages of supercontinent rifting.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, G. B. 1987. Resultados geoquímicos y geocronológicos preliminares de los cuerpos graníticos de Pilcaniyeu, Provincia de Río Negro. ACTAS X CONGR GEOL ARGENTINO, TUCUMÁN, ARGENTINA IV, 27–9.Google Scholar
Caminos, R. & Llambías, E. J. 1984. El basamento cristalino. RELAT IX CONGR GEOL ARGENTINO, SAN CARLOS DE BARILOCHE 1 (2), 3763.Google Scholar
Charrier, R. 1979. El Triásico de Chile y regiones adyacentes de Argentina: una reconstructión paleogeográfica y paleoclimática. COMUNICACIONES 26, 137.Google Scholar
Cingolani, C., Salda, L.Dalla, Hervé, F., Munizaga, F., Pankhurst, R. J., Parada, M. A. & Rapela, C. W. 1991. The magmatic evolution of northern Patagonia: new impressions of pre-Andean and Andean tectonics. In Harmon, R. S. & Rapela, C. W. (eds) Andean Magmatism and its Tectonic Setting. GEOL SOC Am SPEC PUBL 265, 2944.Google Scholar
Coira, B., Nullo, F. E., Proserpio, C. & Ramos, V. A., 1975. Tectónica de basamento de la región occidental del Macizo Nordpatagónico (Provincias de Río Negro y Chubut), República Argentina. REV ASOC GEOL ARGENTINA 30 (4), 361–83.Google Scholar
Corbella, H. 1983. Hallazgo de rocas leucíticas en la Sierra de Los Chacays, Patagonia extrandina, Provincia de Chubut. REV ASOC ARGENTINA MINERAL PETROL SEDIMENTOL 14(3–4), 8896.Google Scholar
Dalziel, I. W. D., Storey, B. C., Garrett, S. W., Grunow, A. M., Herrod, L. B. D. & Pankhurst, R. J. 1987. Extensional tectonics and the fragmentation of Gondwanaland. In Coward, M. P., Dewey, J. F. & Hancock, P. L. (eds) Continental Extension Tectonics, SPEC PUBL GEOL SOC LONDON 28, 431–41.Google Scholar
Groeber, P. 1946. Observaciones geológicas a lo largo del meridiano 70°. 1. Hoja Chos Malal. REV ASOC GEOL ARGENTINA 1(3), 177208.Google Scholar
Johnson, M. C. & Rutherford, M. J. 1988. Experimental calibration of an Aluminium-in-Hornblende geobarometer applicable to calc-alkaline rocks. EOS 69, 1511.Google Scholar
Linares, E., Llambías, E. J. & Latorre, C. O.1980. Geologías, E. J. & Latorre, C. O. 1980. Geología de la provincia de La Pampa, República Argentina, y geocronología de sus rocas metamórficas y eruptivas. REV ASOC GEOL ARGENTINA 35 (1-2), 87146.Google Scholar
Linares, E., Cagnoni, M. C., Campo, M.Do & Ostera, H. A. 1988. Geochronology of metamorphic and eruptive rocks of southeastern Neuquen and northwestern Río Negro provinces, Argentine Republic. J S AMERICAN EARTH SCI 1 (1-2), 5361.CrossRefGoogle Scholar
Llambías, E. J., Caminos, R. & Rapela, C. W. 1984. Las plutonitas y vulcanitas del ciclo eruptivo gondwánico. RELAT IX CONGR GEOL ARGENTINO, SAN CARLOS DE BARILOCHE, ARGENTINA 1(4), 85117.Google Scholar
Palmer, A. R. 1983 (ed.). The decade of North American geology 1983 geological time scale. Boulder, Colorado: The Geological Society of America.Google Scholar
Pankhurst, R. J. 1990. The Paleozoic and Andean magmatic arcs of West Antarctica and southern South America. In Kay, S. M. & Rapela, C. W. (eds) Plutonism from Antarctica to Alaska. GEOL SOC AM SPEC PAP 241, 17.Google Scholar
Pankhurst, R. J. & O'Nions, R. K. 1973. Determination of Rb/Sr and 87Sr/86Sr ratios of some standard rocks and evaluation of X-ray fluorescence spectrometry in Rb-Sr geochemistry. CHEM GEOL 12 (2), 127–36.Google Scholar
Pankhurst, R. J., Hole, M. J. & Brook, M. 1988. Isotope evidence for the origin of Andean granites. TRANS R SOC EDINBURGH EARTH SCI 79, 123–33.Google Scholar
Pankhurst, R. J., Rapela, C. W., Caminos, R., Llambías, E. J. & Parica, C. (in press). A revised age for the granites of the central Somuncura batholith, North Patagonian Massif. J S AMERICAN EARTH SCI.Google Scholar
Parada, M. A. 1990. Granitoid plutonism in Central Chile and its geodynamic implications: a review. In Kay, S. M. & Rapela, C. W. (eds) Plutonism from Antarctica to Alaska. GEOL SOC AM SPEC PAP 241.Google Scholar
Proserpio, C. A. 1978. Descriptión geológica de la Hoja 42d, Gastre, Provincia del Chubut. SERV GEOL NAC BOL BUENOS AIRES ARGENTINA 161.Google Scholar
Ramos, V. A. 1984. Patagonia—Un continente Paleozoico en la deriva? ACT CONGR GEOL ARGENTINO, SAN CARLOS DE BARILOCHE, ARGENTINA II, 311–25.Google Scholar
Ramos, V. A. & Kay, S. M. 1991. Triassic rift basalts of the Cuyo Basin, Central Argentina. In Harmon, R. S. & Rapela, C. W. (eds) Andean Magmatism and its Tectonic Setting. GEOL SOC AM SPEC PUB 265, 7991.Google Scholar
Rapela, C. W. & Kay, S. M. 1988. Late Paleozoic to Recent Magmatic Evolution of Northern Patagonia. EPISODES 11 (3), 176–82.Google Scholar
Rapela, C. W. & Pankhurst, R. J. 1992. The granites of northern Patagonia and the Gastre fault system in relation to the break-up of Gondwana. In Storey, B. C., Alabaster, A. & Pankhurst, R. J. (eds) Magmatism and the causes of continental break-up. GEOL SOC LONDON SPEC PUBL (in press).Google Scholar
Rapela, C. W., Días, G. F., Franzese, J. R., Alonso, G. & Benvenuto, A. R. 1991. El Batolito de la Patagonia Central: evidencias de un magmatismo Trásico-Jurásico asociado a fallas transcurrentes. REV GEOL CHILE 18(2), 121–38.Google Scholar
Rapela, C. W. & Alonso, G. 1991. Compositión litologica y geoquimica del batolito de la Patonia central. ACTAS VI CONGR GEOL CHILENO, VIÑA DEL MAR, CHILE 1, 236–40.Google Scholar
Roenlandts, I & Michel, G. 1986. Sequential inductively coupled plasma determination of some rare-earth elements in five French geostandards. GEOSTANDARDS NEWSL 10(2), 135–54.CrossRefGoogle Scholar
Stipanicic, P. N. & Methol, E. J. 1980. Comarca Norpatagonica. 2° Simposio de Geología Regional Argentina II, 1,07197. Córdoba: Academía National de Ciencias.Google Scholar
Uliana, M. A., Biddle, K. T. & Cerdan, J. 1989. Mesozoic extension and the formation of Argentine sedimentary basins. In Tankard, A. J. & Balkwill, H. R. (eds) Extensional Tectonics and Stratigraphy of the North Atlantic Margin AM ASSOC PET GEOL MEM 46, 599613.Google Scholar
Uliana, M. A. & Biddle, K. T. 1987. Permian to Late Cenozoic evolution of northern Patagonia, main tectonic events, magmatic activity, and depositional trends. In McKenzie, G. D. (ed.) Gondwana Six: Structure, Tectonics, and Geophysics. AM GEOPHYS Union, Geophys Monogr 40, 271–86.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. CONTRIB MINERAL PETROL 95, 407–19.Google Scholar
Williamson, J. H. 1968. Least-squares fitting of a straight line. CAN J PHYS 46, 1845–7.Google Scholar