Hostname: page-component-65b85459fc-lvhvp Total loading time: 0 Render date: 2025-10-16T10:26:42.697Z Has data issue: false hasContentIssue false

ROBUST HIGH-DIMENSIONAL TIME-VARYING COEFFICIENT ESTIMATION

Published online by Cambridge University Press:  16 October 2025

Minseok Shin
Affiliation:
Pohang University of Science and Technology (POSTECH)
Donggyu Kim*
Affiliation:
Department of Economics, University of California, Riverside
*
Address correspondence to Donggyu Kim, University of California Riverside, Riverside, CA, USA, e-mail: donggyu.kim@ucr.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article, we develop a novel high-dimensional coefficient estimation procedure based on high-frequency data. Unlike usual high-dimensional regression procedures such as LASSO, we additionally handle the heavy-tailedness of high-frequency observations as well as time variations of coefficient processes. Specifically, we employ the Huber loss and a truncation scheme to handle heavy-tailed observations, while $\ell _{1}$-regularization is adopted to overcome the curse of dimensionality. To account for the time-varying coefficient, we estimate local coefficients which are biased due to the $\ell _{1}$-regularization. Thus, when estimating integrated coefficients, we propose a debiasing scheme to enjoy the law of large numbers property and employ a thresholding scheme to further accommodate the sparsity of the coefficients. We call this robust thresholding debiased LASSO (RED-LASSO) estimator. We show that the RED-LASSO estimator can achieve a near-optimal convergence rate. In the empirical study, we apply the RED-LASSO procedure to the high-dimensional integrated coefficient estimation using high-frequency trading data.

Information

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ((https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Footnotes

The research of M.S. was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2025-24535699), and in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP)-Global Data-X Leader HRD program grant funded by the Korean government (MSIT) (IITP-2025-RS-2024-00441244). The research of D.K. was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2024-00343129).

References

REFERENCES

Aït-Sahalia, Y., Kalnina, I., & Xiu, D. (2020). High-frequency factor models and regressions. Journal of Econometrics , 216(1), 86105.10.1016/j.jeconom.2020.01.007CrossRefGoogle Scholar
Aït-Sahalia, Y., & Xiu, D. (2019). Principal component analysis of high-frequency data. Journal of the American Statistical Association , 114(525), 287303.10.1080/01621459.2017.1401542CrossRefGoogle Scholar
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Wu, G. (2006). Realized beta: Persistence and predictability. In T. B. Fomby & D. Terrell (Eds.), Econometric analysis of financial and economic time series (pp. 139). Emerald Group Publishing Limited.Google Scholar
Ang, A., & Kristensen, D. (2012). Testing conditional factor models. Journal of Financial Economics , 106(1), 132156.10.1016/j.jfineco.2012.04.008CrossRefGoogle Scholar
Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and momentum everywhere. The Journal of Finance , 68(3), 929985.10.1111/jofi.12021CrossRefGoogle Scholar
Bali, T. G., Cakici, N., & Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the cross-section of expected returns. Journal of Financial Economics , 99(2), 427446.10.1016/j.jfineco.2010.08.014CrossRefGoogle Scholar
Barndorff-Nielsen, O. E., & Shephard, N. (2004). Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics. Econometrica , 72(3), 885925.10.1111/j.1468-0262.2004.00515.xCrossRefGoogle Scholar
Cai, T., Liu, W., & Luo, X. (2011). A constrained ${\ell}_1$ minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association , 106(494), 594607.10.1198/jasa.2011.tm10155CrossRefGoogle Scholar
Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance , 63(6), 28992939.10.1111/j.1540-6261.2008.01416.xCrossRefGoogle Scholar
Candes, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics , 35(6), 23132351.Google Scholar
Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance , 52(1), 5782.10.1111/j.1540-6261.1997.tb03808.xCrossRefGoogle Scholar
Chen, R. Y. (2018). Inference for volatility functionals of multivariate itô semimartingales observed with jump and noise. Preprint, arXiv:1810.04725.Google Scholar
Cochrane, J. H. (2011). Presidential address: Discount rates. The Journal of Finance , 66(4), 10471108.10.1111/j.1540-6261.2011.01671.xCrossRefGoogle Scholar
Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance , 1(2), 223236.10.1080/713665670CrossRefGoogle Scholar
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics , 7(2), 174196.10.1093/jjfinec/nbp001CrossRefGoogle Scholar
Engle, R. F., & Gallo, G. M. (2006). A multiple indicators model for volatility using intra-daily data. Journal of Econometrics , 131(1), 327.10.1016/j.jeconom.2005.01.018CrossRefGoogle Scholar
Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance , 47(2), 427465.Google Scholar
Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics , 116(1), 122.10.1016/j.jfineco.2014.10.010CrossRefGoogle Scholar
Fama, E. F., & French, K. R. (2016). Dissecting anomalies with a five-factor model. The Review of Financial Studies , 29(1), 69103.10.1093/rfs/hhv043CrossRefGoogle Scholar
Fan, J., & Kim, D. (2018). Robust high-dimensional volatility matrix estimation for high-frequency factor model. Journal of the American Statistical Association , 113(523), 12681283.10.1080/01621459.2017.1340888CrossRefGoogle ScholarPubMed
Fan, J., Li, Q., & Wang, Y. (2017). Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions. Journal of the Royal Statistical Society Series B: Statistical Methodology , 79(1), 247265.10.1111/rssb.12166CrossRefGoogle ScholarPubMed
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association , 96(456), 13481360.10.1198/016214501753382273CrossRefGoogle Scholar
Fan, J., Liu, H., Sun, Q., & Zhang, T. (2018). I-LAMM for sparse learning: Simultaneous control of algorithmic complexity and statistical error. Annals of Statistics , 46(2), 814.10.1214/17-AOS1568CrossRefGoogle ScholarPubMed
Ferson, W. E., & Harvey, C. R. (1999). Conditioning variables and the cross section of stock returns. The Journal of Finance , 54(4), 13251360.10.1111/0022-1082.00148CrossRefGoogle Scholar
Freedman, D. A. (1975). On tail probabilities for martingales. The Annals of Probability , 3(1), 100118.10.1214/aop/1176996452CrossRefGoogle Scholar
Gabaix, X., Gopikrishnan, P., Plerou, V., & Stanley, H. E. (2003). A theory of power-law distributions in financial market fluctuations. Nature , 423(6937), 267270.10.1038/nature01624CrossRefGoogle ScholarPubMed
Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized GARCH: A joint model for returns and realized measures of volatility. Journal of Applied Econometrics , 27(6), 877906.10.1002/jae.1234CrossRefGoogle Scholar
Harvey, C. R., Liu, Y., & Zhu, H. (2016). … and the cross-section of expected returns. The Review of Financial Studies , 29(1), 568.10.1093/rfs/hhv059CrossRefGoogle Scholar
Hou, K., Xue, C., & Zhang, L. (2020). Replicating anomalies. The Review of Financial Studies , 33(5), 20192133.10.1093/rfs/hhy131CrossRefGoogle Scholar
Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics , 35(1), 73101.10.1214/aoms/1177703732CrossRefGoogle Scholar
Jacod, J., & Protter, P. E. (2011). Discretization of processes (Vol. 67). Springer Science & Business Media.Google Scholar
Javanmard, A., & Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. The Journal of Machine Learning Research , 15(1), 28692909.Google Scholar
Javanmard, A., & Montanari, A. (2018). Debiasing the lasso: Optimal sample size for Gaussian designs. The Annals of Statistics , 46(6A), 25932622.10.1214/17-AOS1630CrossRefGoogle Scholar
Kalnina, I. (2022). Inference for nonparametric high-frequency estimators with an application to time variation in betas. Journal of Business & Economic Statistics , 41, 112.Google Scholar
Kim, D., & Fan, J. (2019). Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction. Journal of Econometrics , 208(2), 395417.10.1016/j.jeconom.2018.10.003CrossRefGoogle Scholar
Kim, D., Oh, M., and Shin, M. (2025). High-dimensional time-varying coefficient estimation in diffusion models. Preprint, arXiv:2202.08419.Google Scholar
Kim, D., & Wang, Y. (2016). Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data. Journal of Econometrics , 194, 220230.10.1016/j.jeconom.2016.05.003CrossRefGoogle Scholar
Kong, X.-B., Lin, J.-G., Liu, C., & Liu, G.-Y. (2023). Discrepancy between global and local principal component analysis on large-panel high-frequency data. Journal of the American Statistical Association , 118(542), 13331344.10.1080/01621459.2021.1996376CrossRefGoogle Scholar
Kong, X.-B., & Liu, C. (2018). Testing against constant factor loading matrix with large panel high-frequency data. Journal of Econometrics , 204(2), 301319.10.1016/j.jeconom.2018.03.001CrossRefGoogle Scholar
Li, J., Todorov, V., & Tauchen, G. (2017). Adaptive estimation of continuous-time regression models using high-frequency data. Journal of Econometrics , 200(1), 3647.10.1016/j.jeconom.2017.01.010CrossRefGoogle Scholar
Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of Finance , 20(4), 587615.Google Scholar
Mancini, C. (2009). Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scandinavian Journal of Statistics , 36(2), 270296.10.1111/j.1467-9469.2008.00622.xCrossRefGoogle Scholar
Mancini, C. (2017). Truncated realized covariance when prices have infinite variation jumps. Stochastic Processes and their Applications , 127(6), 19982035.10.1016/j.spa.2016.09.008CrossRefGoogle Scholar
Mao, G., & Zhang, Z. (2018). Stochastic tail index model for high frequency financial data with Bayesian analysis. Journal of Econometrics , 205(2), 470487.10.1016/j.jeconom.2018.03.019CrossRefGoogle Scholar
McLean, R. D., & Pontiff, J. (2016). Does academic research destroy stock return predictability? The Journal of Finance , 71(1), 532.10.1111/jofi.12365CrossRefGoogle Scholar
Mykland, P. A., & Zhang, L. (2009). Inference for continuous semimartingales observed at high frequency. Econometrica , 77(5), 14031445.Google Scholar
Oh, M., Kim, D., & Wang, Y. (2024). Robust realized integrated beta estimator with application to dynamic analysis of integrated beta. Journal of Econometrics , 105810, forthcoming.10.1016/j.jeconom.2024.105810CrossRefGoogle Scholar
Reiß, M., Todorov, V., & Tauchen, G. (2015). Nonparametric test for a constant beta between itô semi-martingales based on high-frequency data. Stochastic Processes and their Applications , 125(8), 29552988.10.1016/j.spa.2015.02.008CrossRefGoogle Scholar
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance , 19(3), 425442.Google Scholar
Shephard, N., & Sheppard, K. (2010). Realising the future: Forecasting with high-frequency-based volatility (heavy) models. Journal of Applied Econometrics , 25(2), 197231.10.1002/jae.1158CrossRefGoogle Scholar
Shin, M., Kim, D., & Fan, J. (2023). Adaptive robust large volatility matrix estimation based on high-frequency financial data. Journal of Econometrics , 237(1), 105514.10.1016/j.jeconom.2023.105514CrossRefGoogle Scholar
Song, X., Kim, D., Yuan, H., Cui, X., Lu, Z., Zhou, Y., & Wang, Y. (2021). Volatility analysis with realized GARCH-Itô models. Journal of Econometrics , 222(1), 393410.10.1016/j.jeconom.2020.07.007CrossRefGoogle Scholar
Sun, Q., Zhou, W.-X., & Fan, J. (2020). Adaptive Huber regression. Journal of the American Statistical Association , 115(529), 254265.10.1080/01621459.2018.1543124CrossRefGoogle ScholarPubMed
Tan, K. M., Sun, Q., & Witten, D. (2023). Sparse reduced rank Huber regression in high dimensions. Journal of the American Statistical Association , 118(544), 23832393.10.1080/01621459.2022.2050243CrossRefGoogle ScholarPubMed
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology , 58(1), 267288.10.1111/j.2517-6161.1996.tb02080.xCrossRefGoogle Scholar
Van de Geer, S., Bühlmann, P., Ritov, Y., & Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics , 42(3), 11661202.10.1214/14-AOS1221CrossRefGoogle Scholar
Wang, Y., & Zou, J. (2010). Vast volatility matrix estimation for high-frequency financial data. The Annals of Statistics , 38, 943978.10.1214/09-AOS730CrossRefGoogle Scholar
Zhang, C.-H., & Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society Series B: Statistical Methodology , 76(1), 217242.10.1111/rssb.12026CrossRefGoogle Scholar
Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise. Journal of Econometrics , 160(1), 3347.10.1016/j.jeconom.2010.03.012CrossRefGoogle Scholar