Hostname: page-component-65b85459fc-2g6tz Total loading time: 0 Render date: 2025-10-17T06:34:11.917Z Has data issue: false hasContentIssue false

SWITCHING REGIME INTEGER AUTOREGRESSIONS

Published online by Cambridge University Press:  17 October 2025

Leopoldo Catania*
Affiliation:
Aarhus University and CoRE
Eduardo Rossi
Affiliation:
University of Pavia
Paolo Santucci de Magistris
Affiliation:
Luiss University
*
Address correspondence to Leopoldo Catania, Department of Economics and Business Economics and CoRE, Aarhus University, Aarhus, Denmark, e-mail: leopoldo.catania@econ.au.dk.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Time series of counts often display complex dynamic and distributional characteristics. For this reason, we develop a flexible framework combining the integer-valued autoregressive (INAR) model with a latent Markov structure, leading to the hidden Markov model-INAR (HMM-INAR). First, we illustrate conditions for the existence of an ergodic and stationary solution and derive closed-form expressions for the autocorrelation function and its components. Second, we show consistency and asymptotic normality of the conditional maximum likelihood estimator. Third, we derive an efficient expectation–maximization algorithm with steps available in closed form which allows for fast computation of the estimator. Fourth, we provide an empirical illustration and estimate the HMM-INAR on the number of trades of the Standard & Poor’s Depositary Receipts S&P 500 Exchange-Traded Fund Trust. The combination of the latent HMM structure with a simple INAR$(1)$ formulation not only provides better fit compared to alternative specifications for count data, but it also preserves the economic interpretation of the results.

Information

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided that no alterations are made and the original article is properly cited. The written permission of Cambridge University Press must be obtained prior to any commercial use and/or adaptation of the article.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Footnotes

We are grateful to the Editor, Prof. Yixiao Sun, and two anonymous reviewers for their extremely useful remarks that greatly improved the quality of the current version of the manuscript. We are also grateful to Kim Christensen for providing us with the high-frequency data on the number of trades and trading volume used in the empirical analysis. We also thank the participants at the HFFE workshop in Pisa (September 2018), the HAX conference in Xiamen (October 2018), the ICEEE conference in Lecce (January 2019), the NBER-NSF Time series conference in Hong Kong (August 2019), the Econometrics in the Arena workshop in Verona (September 2019), the IWEEE Time Series conference in Venezia (January 2020), the SNDE Symposium in Padua (March 2024), the SofiE conference in Rio de Janeiro (June 2024), and the workshop in honor of Carlo Giannini in Pavia (September 2024) for useful comments and suggestions. L.C. and P.S.d.M. acknowledge the research support of the Project 2 grants of the Danish Council for Independent Research (IRFD), Social Sciences, number 8019-00015A and 3099-00089B, and of the Aarhus Universitets Forskningsfond (AUFF). P.S.d.M and E.R. acknowledge the research support of the European Union's - Next Generation EU program through the Italian PRIN 2022 - M4C2, Investment 1.1 - “Monitoring Risks in Financial Markets” – Codice Cineca: 2022NEL482 - CUP: I53D23003410008.

References

REFERENCES

Aknouche, A., & Franq, C. (2021). Count and duration time series with equal conditional stochastic and mean orders. Econometric Theory , 37(2), 248280.10.1017/S0266466620000134CrossRefGoogle Scholar
Aknouche, A., & Scotto, M. G. (2024). A multiplicative thinning-based integer-valued GARCH model. Journal of Time Series Analysis , 45(1), 426.10.1111/jtsa.12682CrossRefGoogle Scholar
Al-Osh, M., & Alzaid, A. A. (1987). First-order integer-valued autoregressive INAR(1) process. Journal of Time Series Analysis , 8(3), 261275.10.1111/j.1467-9892.1987.tb00438.xCrossRefGoogle Scholar
Al-Osh, M. A., & Aly, E.-E. A. (1992). First order autoregressive time series with negative binomial and geometric marginals. Communications in Statistics-Theory and Methods , 21(9), 24832492.10.1080/03610929208830925CrossRefGoogle Scholar
Alerini, J., Olteanu, M., & Ridgway, J. (2017). Markov and the Duchy of Savoy: Segmenting a century with regime-switching models. Journal de la Société Française de Statistique , 158, 89116.Google Scholar
Alzaid, A. A., & Al-Osh, M. (1990). An integer-valued pth-order autoregressive structure (INAR(p)) process. Journal of Applied Probability , 27(2), 314324.10.2307/3214650CrossRefGoogle Scholar
Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets , 5(1), 3156.10.1016/S1386-4181(01)00024-6CrossRefGoogle Scholar
Andersen, T. G., Thyrsgaard, M., & Todorov, V. (2019). Time-varying periodicity in intraday volatility. Journal of the American Statistical Association , 114(2), 16951707.10.1080/01621459.2018.1512864CrossRefGoogle Scholar
Armillotta, M., Luati, L., & Lupparelli, M. (2022). Observation-driven models for discrete-valued time series. Electronic Journal of Statistics , 16(1), 13931433.10.1214/22-EJS1989CrossRefGoogle Scholar
Barardehi, Y. H., Bernhardt, D., & Davies, R. J. (2019). Trade-time measures of liquidity. The Review of Financial Studies , 32(1), 126179.10.1093/rfs/hhy012CrossRefGoogle Scholar
Bartolucci, F., & Farcomeni, A. (2009). A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. Journal of the American Statistical Association , 104(486), 816831.10.1198/jasa.2009.0107CrossRefGoogle Scholar
Bartolucci, F., Farcomeni, A., & Pennoni, F. (2012). Latent Markov models for longitudinal data . Chapman and Hall/CRC Press.10.1201/b13246CrossRefGoogle Scholar
Bourguignon, M., & Weiß, C. H. (2017). An INAR(1) process for modeling count time series with equidispersion, underdispersion and over-dispersion. TEST , 26(4), 847868.10.1007/s11749-017-0536-4CrossRefGoogle Scholar
Brännäs, K., & Hellström, J. (2001). Generalized integer-valued autoregression. Econometric Reviews , 20(4), 425443.10.1081/ETC-100106998CrossRefGoogle Scholar
Brockwell, A. E. (2007). Universal residuals: A multivariate transformation. Statistics & Probability Letters , 77(14), 14731478.10.1016/j.spl.2007.02.008CrossRefGoogle ScholarPubMed
Bu, R., & McCabe, B. (2008). Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov chain approach. International Journal of Forecasting , 24(1), 151162.10.1016/j.ijforecast.2007.11.002CrossRefGoogle Scholar
Bu, R., McCabe, B., & Hadri, K. (2008). Maximum likelihood estimation of higher-order integer-valued autoregressive processes. Journal of Time Series Analysis , 29(6), 973994.10.1111/j.1467-9892.2008.00590.xCrossRefGoogle Scholar
Catania, L., & Di Mari, R. (2021). Hierarchical Markov-switching models for multivariate integer-valued time-series. Journal of Econometrics , 221(1), 118137.10.1016/j.jeconom.2020.02.002CrossRefGoogle Scholar
Catania, L., Di Mari, R., & Santucci de Magistris, P. (2022). Dynamic discrete mixtures for high-frequency prices. Journal of Business & Economic Statistics , 40(2), 559577.10.1080/07350015.2020.1840994CrossRefGoogle Scholar
Chan, K. (1990). Deterministic stability, stochastic stability, and ergodicity. In Non-linear time series analysis: A dynamical system approach . Oxford University Press.Google Scholar
Chandra, S. (1977). On the mixtures of probability distributions. Scandinavian Journal of Statistics , 4(3), 105112.Google Scholar
Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging . Cambridge University Press.Google Scholar
Csiszár, I., & Shields, P. C. (2000). The consistency of the BIC Markov order estimator. The Annals of Statistics , 28(6), 16011619.10.1214/aos/1015957472CrossRefGoogle Scholar
Davis, R. A., Fokianos, K., Holan, S. H., Joe, H., Livsey, J., Lund, R., Pipiras, V., & Ravishanker, N. (2021). Count time series: A methodological review. Journal of the American Statistical Association , 116(535), 15331547.10.1080/01621459.2021.1904957CrossRefGoogle Scholar
Davis, R. A., Holan, S. H., Lund, R., & Ravishanker, N. (2016). Handbook of discrete-valued time series . CRC Press.10.1201/b19485CrossRefGoogle Scholar
Diebold, F. X., Gunther, T. A., & Tay, A. S. (1998). Evaluating density forecasts with applications to financial risk management. International Economic Review , 39(4), 863883.10.2307/2527342CrossRefGoogle Scholar
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics , 20(1), 134144.10.1198/073500102753410444CrossRefGoogle Scholar
Douc, R., Moulines, E., & Rydén, T. (2004). Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. The Annals of Statistics , 32(5), 22542304.10.1214/009053604000000021CrossRefGoogle Scholar
Du, J.-G., & Li, Y. (1991). The integer-valued autoregressive INAR(p) model. Journal of Time Series Analysis , 12(2), 129142.Google Scholar
Easley, D., & O’Hara, M. (1987). Price, trade size, and information in securities markets. Journal of Financial Economics , 19(1), 6990.10.1016/0304-405X(87)90029-8CrossRefGoogle Scholar
Fokianos, K. (2012). Count time series models. In T. Subba Rao, S. Subba Rao & C. R. Rao (Eds.), Handbook of statistics (Vol. 30, pp. 315347). Elsevier.Google Scholar
Fokianos, K., Rahbek, A., & Tjøstheim, D. (2009). Poisson autoregression. Journal of the American Statistical Association , 104(488), 14301439.10.1198/jasa.2009.tm08270CrossRefGoogle Scholar
Fokianos, K., & Neumann, M. H. (2013). A goodness-of-fit test for Poisson count processes. Electronic Journal of Statistics , 7, 793819.10.1214/13-EJS790CrossRefGoogle Scholar
Fokianos, K., Støve, B., Tjøstheim, D., & Doukhan, P. (2020). Multivariate count autoregression. Bernoulli , 26(1), 471499.10.3150/19-BEJ1132CrossRefGoogle Scholar
Freeland, R. K., & McCabe, B. P. (2004a). Analysis of low count time series data by Poisson autoregression. Journal of Time Series Analysis , 25(5), 701722.10.1111/j.1467-9892.2004.01885.xCrossRefGoogle Scholar
Freeland, R. K., & McCabe, B. P. (2004b). Forecasting discrete valued low count time series. International Journal of Forecasting , 20(3), 427434.10.1016/S0169-2070(03)00014-1CrossRefGoogle Scholar
Gassiat, É., Cleynen, A., & Robin, S. (2016). Inference in finite state space non parametric hidden Markov models and applications. Statistics and Computing , 26(1), 6171.10.1007/s11222-014-9523-8CrossRefGoogle Scholar
Gassiat, É., & Boucheron, S. (2003). Optimal error exponents in hidden Markov models order estimation. IEEE Transactions on Information Theory , 49(4), 964980.10.1109/TIT.2003.809574CrossRefGoogle Scholar
Gouriéroux, C., & Jasiak, J. (2004). Heterogeneous INAR(1) model with application to car insurance. Insurance: Mathematics and Economics , 34(2), 177192.Google Scholar
Gouriéroux, C., & Lu, Y. (2019). Negative binomial autoregressive process with stochastic intensity. Journal of Time Series Analysis , 40(2), 225247.10.1111/jtsa.12441CrossRefGoogle Scholar
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the Econometric Society , 57(2), 357384.10.2307/1912559CrossRefGoogle Scholar
Harris, D., & McCabe, B. (2019). Semiparametric independence testing for time series of counts and the role of the support. Econometric Theory , 35(6), 11111145.10.1017/S0266466618000403CrossRefGoogle Scholar
Jung, R. C., & Tremayne, A. R. (2006a). Binomial thinning models for integer time series. Statistical Modelling , 6(2), 8196.10.1191/1471082X06st114oaCrossRefGoogle Scholar
Jung, R. C., & Tremayne, A. R. (2006b). Coherent forecasting in integer time series models. International Journal of Forecasting , 22(2), 223238.10.1016/j.ijforecast.2005.07.001CrossRefGoogle Scholar
Kang, Y., Zhu, F., Wang, D., & Wang, S. (2024). A zero-modified geometric INAR(1) model for analyzing count time series with multiple features. Canadian Journal of Statistics , 52(3), 873899.10.1002/cjs.11774CrossRefGoogle Scholar
Karpoff, J. M. (1987). The relation between price changes and trading volume: A survey. Journal of Financial and Quantitative Analysis , 22(1), 109126.10.2307/2330874CrossRefGoogle Scholar
Krishnamurthy, V., & Rydén, T. (1998). Consistent estimation of linear and non-linear autoregressive models with Markov regime. Journal of Time Series Analysis , 19(3), 291307.10.1111/1467-9892.00093CrossRefGoogle Scholar
Levinson, S. E., Rabiner, L. R., & Sondhi, M. M. (1983). An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell System Technical Journal , 62(4), 10351074.10.1002/j.1538-7305.1983.tb03114.xCrossRefGoogle Scholar
Livsey, J., Lund, R., Kechagias, S., & Pipiras, V. (2018). Multivariate integer-valued time series with flexible autocovariances and their application to major hurricane counts. The Annals of Applied Statistics , 12(1), 408431.10.1214/17-AOAS1098CrossRefGoogle Scholar
Lu, F., & Wang, D. (2022). First-order integer-valued autoregressive process with Markov-switching coefficients. Communications in Statistics-Theory and Methods , 51, 43134329.10.1080/03610926.2020.1813302CrossRefGoogle Scholar
McKenzie, E. (1985). Some simple models for discrete variate time series. Water Resources Bulletin , 21(4), 645650.10.1111/j.1752-1688.1985.tb05379.xCrossRefGoogle Scholar
Meng, X.-L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika , 80(2), 267278.10.1093/biomet/80.2.267CrossRefGoogle Scholar
Nastić, A. S., Laketa, P. N., & Ristić, M. M. (2016). Random environment integer-valued autoregressive process. Journal of Time Series Analysis , 37(2), 267287.10.1111/jtsa.12161CrossRefGoogle Scholar
Pavlopoulos, H., & Karlis, D. (2008). INAR(1) modeling of overdispersed count series with an environmental application. Environmetrics , 19(4), 369393.10.1002/env.883CrossRefGoogle Scholar
Pedeli, X., Davison, A. C., & Fokianos, K. (2015). Likelihood estimation for the INAR(p) model by saddlepoint approximation. Journal of the American Statistical Association , 110(511), 12291238.10.1080/01621459.2014.983230CrossRefGoogle Scholar
Qian, L., & Zhu, F. (2025). A flexible model for time series of counts with overdispersion or underdispersion, zero-inflation and heavy-tailedness. Communications in Mathematics and Statistics , 13(2), 431454.10.1007/s40304-022-00327-1CrossRefGoogle Scholar
Quoreshi, A. M. M. S. (2014). A long-memory integer-valued time series model, INARFIMA, for financial application. Quantitative Finance , 14(12), 22252235.10.1080/14697688.2012.711911CrossRefGoogle Scholar
Roick, T., Karlis, D., & McNicholas, P. D. (2021). Clustering discrete-valued time series. Advances in Data Analysis and Classification , 15(1), 209229.10.1007/s11634-020-00395-7CrossRefGoogle Scholar
Ranaldo, A., & Santucci de Magistris, P. (2022). Liquidity in the global currency market. Journal of Financial Economics , 146(3), 859883.10.1016/j.jfineco.2022.09.004CrossRefGoogle Scholar
Rossi, E., & Fantazzini, D. (2014). Long memory and periodicity in intraday volatility. Journal of Financial Econometrics , 13(4), 922961.10.1093/jjfinec/nbu006CrossRefGoogle Scholar
Roy, A., & Karmakar, S. (2021). Time-varying auto-regressive models for count time-series. Electronic Journal of Statistics , 15(1), 29052938.10.1214/21-EJS1851CrossRefGoogle Scholar
Rudholm, N. (2001). Entry and the number of firms in the Swedish pharmaceuticals market. Review of Industrial Organization , 19, 351364.10.1023/A:1011868404205CrossRefGoogle Scholar
Rydberg, T. H., & Shephard, N. (2000). A modelling framework for the prices and times of trades made on the New York stock exchange. In W. J. Fitzgerald, R. L. Smith, A. T. Walden & P. Young (Eds.), Nonlinear and nonstationary signal processing . Cambridge University Press Cambridge.Google Scholar
Rydén, T., Teräsvirta, T., & Aasbrink, S. (1998). Stylized facts of daily return series and the hidden Markov model. Journal of Applied Econometrics , 13(3), 217244.10.1002/(SICI)1099-1255(199805/06)13:3<217::AID-JAE476>3.0.CO;2-V3.0.CO;2-V>CrossRefGoogle Scholar
Schweer, S., & Weiß, C. H. (2014). Compound Poisson INAR(1) processes: Stochastic properties and testing for over-dispersion. Computational Statistics & Data Analysis , 77, 267284.10.1016/j.csda.2014.03.005CrossRefGoogle Scholar
Steutel, F., & Van Harn, K. (1979). Discrete analogues of self-decomposability and stability. The Annals of Probability , 7(5), 893899.10.1214/aop/1176994950CrossRefGoogle Scholar
Tang, M., & Wang, Y. (2014). Asymptotic behavior of random coefficient INAR model under random environment defined by difference equation. Advances in Difference Equations , 99(1), 19.Google Scholar
Tauchen, G. E., & Pitts, M. (1983). The price variability-volume relationship on speculative markets. Econometrica: Journal of the Econometric Society , 51, 485505.10.2307/1912002CrossRefGoogle Scholar
Thyregod, P., Carstensen, J., Madsen, H., & Arnbjerg-Nielsen, K. (1999). Integer valued autoregressive models for tipping bucket rainfall measurements. Environmetrics , 10(4), 395411.10.1002/(SICI)1099-095X(199907/08)10:4<395::AID-ENV364>3.0.CO;2-M3.0.CO;2-M>CrossRefGoogle Scholar
Tong, H. (1990). Non-linear time series: A dynamical system approach . Oxford University Press.10.1093/oso/9780198522249.001.0001CrossRefGoogle Scholar
Tweedie, R. L. (1975). Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stochastic Processes and their Applications , 3(4), 385403.10.1016/0304-4149(75)90033-2CrossRefGoogle Scholar
Vermunt, J. K., Langeheine, R., & Böckenholt, U. (1999). Discrete-time discrete-state latent Markov models with time-constant and time-varying covariates. Journal of Educational and Behavioral Statistics , 24(2), 179207.10.3102/10769986024002179CrossRefGoogle Scholar
Weiß, C. H. (2008). Thinning operations for modeling time series of counts: A survey. AStA Advances in Statistical Analysis , 92(3), 319.10.1007/s10182-008-0072-3CrossRefGoogle Scholar
Weiß, C. H. (2015). A Poisson INAR(1) model with serially dependent innovations. Metrika , 78(7), 829851.10.1007/s00184-015-0529-9CrossRefGoogle Scholar
Weiß, C. H., Zhu, F., & Hoshiyar, A. (2022). Softplus INGARCH models. Statistica Sinica , 32(2), 10991120.Google Scholar
Weiß, C. H., & Zhu, F. (2024). Conditional-mean multiplicative operator models for count time series. Computational Statistics and Data Analysis , 191, 107885.10.1016/j.csda.2023.107885CrossRefGoogle Scholar
Wong, C. S., & Li, W. K. (2000). On a mixture autoregressive model. Journal of the Royal Statistical Society Series B: Statistical Methodology , 62(1), 95115.10.1111/1467-9868.00222CrossRefGoogle Scholar
Zheng, H., Basawa, I. V., & Datta, S. (2007). First-order random coefficient integer-valued autoregressive processes. Journal of Statistical Planning and Inference , 137(1), 212229.10.1016/j.jspi.2005.12.003CrossRefGoogle Scholar
Zucchini, W., MacDonald, I. L., & Langrock, R. (2017). Hidden Markov models for time series: An introduction using R . CRC Press.10.1201/b20790CrossRefGoogle Scholar
Supplementary material: File

Catania et al. supplementary material

Catania et al. supplementary material
Download Catania et al. supplementary material(File)
File 423.3 KB