Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Amaral-Silva, Paulo Marcos Clarindo, Wellington Ronildo Carrijo, Tatiana Tavares Carvalho, Carlos Roberto and Praça-Fontes, Milene Miranda 2016. The contribution of cytogenetics and flow cytometry for understanding the karyotype evolution in three Dorstenia (Linnaeus, 1753) species (Moraceae). Comparative Cytogenetics, Vol. 10, Issue. 1, p. 97.


    Rzepecky, Alain 2016. Dorstenia horwoodiiRzepecky sp. nov. from Nudum to Novum, a Fortyish Year Hiatus. Cactus and Succulent Journal, Vol. 88, Issue. 2, p. 66.


    ×

PHYLOGENY, BIOGEOGRAPHY AND CHARACTER EVOLUTION OF DORSTENIA (MORACEAE)

  • T. M. Misiewicz (a1) (a2) (a3) and N. C. Zerega (a1) (a2)
  • DOI: http://dx.doi.org/10.1017/S096042861200025X
  • Published online: 18 October 2012
Abstract

Dorstenia, the second largest genus (105 species) within the Moraceae, is the only genus in the family with woody, herbaceous and succulent species. All but one species of Dorstenia are restricted to the Neotropics or Africa, and it is the only genus in the family with an almost equal transatlantic distribution. This work presents the first molecular phylogeny and the first evolutionary study to examine origin and diversification within the genus. We inferred the phylogeny with ITS sequence data using Bayesian and maximum likelihood approaches. We tracked the evolution of distinct morphological characters and tested for correlated evolution in multiple characters. Time and place of Dorstenia’s origin were estimated to test a post-Gondwanan versus a Gondwanan origin hypothesis using fossil calibrations, Bayesian molecular dating, and maximum likelihood-based ancestral range reconstructions. Our phylogenetic analysis supports the monophyly of Dorstenia; previous subgeneric classifications are polyphyletic and must be re-evaluated. Woody habit, phanerophytic life form, macrospermy, and lack of storage organs are ancestral traits found in African Dorstenia. Evolution of woodiness and macrospermy are correlated. Dorstenia appears to have originated in Africa, radiated into the Neotropics and subsequently re-colonised Africa. Whether or not the extant distribution is the result of vicariance or dispersal is equivocal.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Akaike (1974). A new look at the statistical model identification. IEEE Transactions of Automatic Control 19: 716723.

I. Alvarez & J. F Wendel . (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogenet. Evol. 29: 417434.

C. D. Bailey , T. G. Carr , S. A. Harris & C. E Hughes . (2003). Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molec. Phylogenet. Evol. 29: 435455.

E. Barghoorn (1964). Evolution of cambium in geologic time. In: M. H Zimmermann . (ed.) The Formation of Wood in Forest Trees, pp. 317. New York and London: Academic Press.

K. S. Bawa , D. R. Perry & J. H Beach . (1985). Reproductive biology of tropical lowland rainforest trees. I. Sexual systems and incompatibility mechanisms. Amer. J. Bot. 72: 331410.

U. R. Böhle , H. H. Hilger & W. F Martin . (1996). Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc. Natl. Acad. Sci. USA 93: 1174011745.

R. J. Burnham & A. Graham (1999). The history of neotropical vegetation: New developments and status. Ann. Missouri Bot. Gard. 86: 546589.

B. Chaudhry , A. Yasmeen , T. Husnain & S. Riazuddin (1999). Mini-scale genomic DNA extraction from cotton. Plant Mol. Biol. Rep. 17: 17.

J. W. Clayton , P. S. Soltis & D. E Soltis . (2009). Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst. Biol. 58: 395410.

W. L. Clement & G. D Weiblen . (2009). Morphological evolution in the mulberry family (Moraceae). Syst. Bot. 34: 530552.

S. Datwyler & G. Weiblen (2004). On the origin of the fig: Phylogenetic relationships of Moraceae from ndhF sequences. Amer. J. Bot. 91: 767777.

A. J. Drummond & A. Rambaut (2007). BEAST: Bayesian evolutionary analysis by sampling trees. Biomed. Cent. Evol. Biol. 7: 214.

A. J. Drummond , S. Y. W. Ho , M. J. Phyllips & A. Rambaut (2006). Relaxed phylogenetics and dating with confidence. PLoS Biol. 4: e88.

R. C Edgar . (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 17921797.

G. N. Feliner & J. A Rossello . (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molec. Phylogenet. Evol. 44: 911919.

J. Felsenstein (1973). Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Zool. 22: 240249.

J. Felsenstein (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.

T. S. Field , N. C. Arens , J. A. Doyle , T. E. Dawson & M. J Donoghue . (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30: 82107.

S. C. Kim , D. J. Crawford , J. Francisco-Ortega & A. Santos-Guerra (1996). A common origin for woody Sonchus and five related genera in the Macaronesian islands: molecular evidence for extensive radiation. Proc. Natl. Acad. Sci. USA 93: 77437748.

S. Magallon & M. J Sanderson . (2001). Absolute diversification rates in angiosperm clades. Evolution 55: 17621780.

S. McLoughlin (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Austral. J. Bot. 49: 271300.

A. T. Moles , D. D. Ackerly , J. C. Tweddle , J. B. Dickie , R. Smith , M. R. Leishman . (2007). Global patterns in seed size. Global Ecol. Biogeogr. 16: 109116.

A. N. Muellner , V. Savolainen , R. Samuel & M. W Chase . (2006). The mahogany family “Out-of-Africa”: Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Molec. Phylogenet. Evol. 40: 236250.

M. Pagel (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 255: 3745.

R. T. Pennington & C. W Dick . (2004). The role of immigrants in the assembly of the South American rainforest tree flora. Philos. Trans., Ser. B 359: 16111622.

P. H. Raven & D. I Axelrod . (1974). Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539673.

R. H. Ree & S. A Smith . (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57: 414.

R. H. Ree , B. R. Moore , C. O. Webb & M. J Donoghue . (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59: 22992311.

S. S Renner . (2004). Plant dispersal across the tropical Atlantic by wind and sea currents. Int. J. Pl. Sci. 165: S23S33.

F. Ronquist & J. P Huelsenbeck . (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.

S. Sakai (2001). Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. Amer. J. Bot. 88: 15271534.

S. Sakai , M. Kato & H. Nagamasu (2000). Artocarpus (Moraceae)–gall midge pollination mutualism mediated by a male-flower parasitic fungus. Amer. J. Bot. 87: 440445.

J. Shaw , E. B. Lickey , E. E. Schilling & R. L Small . (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer. J. Bot. 94: 275288.

M. P Simmons . (2004). Independence of alignment and tree search. Molec. Phylogenet. Evol. 31: 874879.

A. Stamatakis (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.

A. Stamatakis , P. Hoover & J. Rougemont (2008). A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57: 758771.

B. H Tiffney . (1985). Perspectives on the origin of the floristic similarity between Eastern Asia and eastern North America. J. Arnold Arbor. 66: 7394.

Z. Yang & B. Rannala (1997). Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Molec. Biol. Evol. 14: 717724.

N. J. C. Zerega , L. A. Mound & G. D Weiblen . (2004). Pollination in the New Guinea endemic Antiaropsis decipiens (Moraceae) is mediated by a new species of thrips, Thrips antiaropsidis (Thysanoptera: Thripidae). Int. J. Pl. Sci. 165: 10171026.

N. J. C. Zerega , W. L. Clement , S. L. Datwyler & G. D Weiblen . (2005). Biogeography and divergence times in the mulberry family (Moraceae). Molec. Phylogenet. Evol. 37(2): 402416.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Edinburgh Journal of Botany
  • ISSN: 0960-4286
  • EISSN: 1474-0036
  • URL: /core/journals/edinburgh-journal-of-botany
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: