Published online by Cambridge University Press: 22 July 2015
For each   $n=1,2,\ldots ,$  let
 $n=1,2,\ldots ,$  let   $\text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}$  be the affine group over the integers. For every point
 $\text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}$  be the affine group over the integers. For every point   $x=(x_{1},\ldots ,x_{n})\in \mathbb{R}^{n}$  let
 $x=(x_{1},\ldots ,x_{n})\in \mathbb{R}^{n}$  let   $\text{orb}(x)=\{\unicode[STIX]{x1D6FE}(x)\in \mathbb{R}^{n}\mid \unicode[STIX]{x1D6FE}\in \text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}\}.$  Let
 $\text{orb}(x)=\{\unicode[STIX]{x1D6FE}(x)\in \mathbb{R}^{n}\mid \unicode[STIX]{x1D6FE}\in \text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}\}.$  Let   $G_{x}$  be the subgroup of the additive group
 $G_{x}$  be the subgroup of the additive group   $\mathbb{R}$  generated by
 $\mathbb{R}$  generated by   $x_{1},\ldots ,x_{n},1$ . If
 $x_{1},\ldots ,x_{n},1$ . If   $\text{rank}(G_{x})\neq n$  then
 $\text{rank}(G_{x})\neq n$  then   $\text{orb}(x)=\{y\in \mathbb{R}^{n}\mid G_{y}=G_{x}\}$ . Thus,
 $\text{orb}(x)=\{y\in \mathbb{R}^{n}\mid G_{y}=G_{x}\}$ . Thus,   $G_{x}$  is a complete classifier of
 $G_{x}$  is a complete classifier of   $\text{orb}(x)$ . By contrast, if
 $\text{orb}(x)$ . By contrast, if   $\text{rank}(G_{x})=n$ , knowledge of
 $\text{rank}(G_{x})=n$ , knowledge of   $G_{x}$  alone is not sufficient in general to uniquely recover
 $G_{x}$  alone is not sufficient in general to uniquely recover   $\text{orb}(x)$ ; as a matter of fact,
 $\text{orb}(x)$ ; as a matter of fact,   $G_{x}$  determines precisely
 $G_{x}$  determines precisely   $\max (1,\unicode[STIX]{x1D719}(d)/2)$  different orbits, where
 $\max (1,\unicode[STIX]{x1D719}(d)/2)$  different orbits, where   $d$  is the denominator of the smallest positive non-zero rational in
 $d$  is the denominator of the smallest positive non-zero rational in   $G_{x}$  and
 $G_{x}$  and   $\unicode[STIX]{x1D719}$  is the Euler function. To get a complete classification, rational polyhedral geometry provides an integer
 $\unicode[STIX]{x1D719}$  is the Euler function. To get a complete classification, rational polyhedral geometry provides an integer   $1\leq c_{x}\leq \max (1,d/2)$  such that
 $1\leq c_{x}\leq \max (1,d/2)$  such that   $\text{orb}(y)=\text{orb}(x)$  if and only if
 $\text{orb}(y)=\text{orb}(x)$  if and only if   $(G_{x},c_{x})=(G_{y},c_{y})$ . Applications are given to lattice-ordered abelian groups with strong unit and to AF
 $(G_{x},c_{x})=(G_{y},c_{y})$ . Applications are given to lattice-ordered abelian groups with strong unit and to AF   $C^{\ast }$ -algebras.
 $C^{\ast }$ -algebras.