Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-17T09:21:58.566Z Has data issue: false hasContentIssue false

Ergodic optimization for continuous functions on non-Markov shifts

Published online by Cambridge University Press:  15 August 2025

MAO SHINODA
Affiliation:
Department of Mathematics, Ochanomizu University https://ror.org/03599d813 , 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: shinoda.mao@ocha.ac.jp)
HIROKI TAKAHASI*
Affiliation:
Department of Mathematics, Keio University https://ror.org/02kn6nx58 , Yokohama 223-8522, Japan
KENICHIRO YAMAMOTO
Affiliation:
Department of General Education, Nagaoka University of Technology https://ror.org/00ys1hz88 , Nagaoka 940-2188, Japan (e-mail: k_yamamoto@vos.nagaokaut.ac.jp)

Abstract

Ergodic optimization aims to describe dynamically invariant probability measures that maximize the integral of a given function. For a wide class of intrinsically ergodic subshifts over a finite alphabet, we show that the space of continuous functions on the shift space contains two disjoint subsets: one is a dense $G_\delta $ set for which all maximizing measures have ‘relatively small’ entropy; the other is the set of functions having uncountably many, fully supported ergodic maximizing measures with ‘relatively large’ entropy. This result generalizes and unifies the results of Morris [Discrete Contin. Dyn. Syst. 27 (2010), 383–388] and Shinoda [Nonlinearity 31 (2018), 2192–2200] on symbolic dynamics, and applies to a wide class of intrinsically ergodic non-Markov symbolic dynamics without the Bowen specification property, including any transitive piecewise monotonic interval map, some coded shifts, and multidimensional $\beta $-transformations. Along with these examples of application, we provide an example of an intrinsically ergodic subshift with positive obstruction entropy to specification.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baraviera, A. T., Leplaideur, R. and Lopes, A. O.. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra (IMPA Mathematical Publications, 29th Brazilian Mathematics Colloquium) Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013.Google Scholar
Bishop, E. and Phelps, R. R.. The support functionals of a convex set. Convexity (AMS Proceedings of Symposia in Pure Mathematics, 7). Ed. V. L. Klee. American Mathematical Society, Providence, RI, 1963, pp. 2735.Google Scholar
Bochi, J.. Ergodic optimization of Birkhoff averages and Lyapunov exponents. Proceedings of the International Congress of Mathematicians, Rio de Janeiro, 2018. Volume III. Invited Lectures. Ed. B. Sirakov, P. Ney de Souza and M. Viana. World Scientific Publishing, Hackensack, NJ, 2018, pp. 18251846.Google Scholar
Bousch, T.. Le poisson n’a pas d’arêtes. Ann. Inst. Henri Poincaré Probab. Stat. 36 (2000), 489508.10.1016/S0246-0203(00)00132-1CrossRefGoogle Scholar
Bousch, T.. La condition de Walters , Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), 59886017.Google Scholar
Bousch, T. and Jenkinson, O.. Cohomology class of dynamically non-negative ${C}^k$ functions. Invent. Math. 148 (2002), 207217.10.1007/s002220100194CrossRefGoogle Scholar
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401414.CrossRefGoogle Scholar
Brémont, J.. Entropy and maximizing measures of generic continuous functions. C. R. Math. Acad. Sci. 346 (2008), 199201.10.1016/j.crma.2008.01.006CrossRefGoogle Scholar
Buzzi, J.. Specification on the interval. Trans. Amer. Math. Soc. 349 (1997), 27372754.10.1090/S0002-9947-97-01873-4CrossRefGoogle Scholar
Buzzi, J.. Subshifts of quasi-finite type. Invent. Math. 159 (2005), 369406.10.1007/s00222-004-0392-1CrossRefGoogle Scholar
Climenhaga, V.. Specification and towers in shift spaces. Comm. Math. Phys. 364 (2018), 441504.10.1007/s00220-018-3265-yCrossRefGoogle Scholar
Climenhaga, V.. V. Climenhaga’s slides (accessed 21 May 2025). https://www.math.uh.edu/climenha/doc/marseille-specification.pdf.Google Scholar
Climenhaga, V.. V. Climenhaga’s Math blog (accessed 21 May 2025). https://vaughnclimenhaga.wordpress.com/2014/09/08/entropy-of-s-gap-shifts/.Google Scholar
Climenhaga, V. and Thompson, D. J.. Intrinsic ergodicity beyond specification: $\beta$ -shifts, $S$ -gap shifts, and their factors. Israel J. Math. 192 (2012), 785817.10.1007/s11856-012-0052-xCrossRefGoogle Scholar
Climenhaga, V. and Thompson, D. J.. Equilibrium states beyond specification and the Bowen property. J. Lond. Math. Soc. 87 (2013), 401427.10.1112/jlms/jds054CrossRefGoogle Scholar
Climenhaga, V. and Thompson, D. J.. Intrinsic ergodicity via obstruction entropies. Ergod. Th. & Dynam. Sys. 34 (2014), 18161831.10.1017/etds.2013.16CrossRefGoogle Scholar
Climenhaga, V., Thompson, D. J. and Yamamoto, K.. Large deviations for systems with non-uniform structure. Trans. Amer. Math. Soc. 369 (2017), 41674192.10.1090/tran/6786CrossRefGoogle Scholar
Contreras, G., Lopes, A. O. and Thieullen, P.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. $\&$ Dynam. Sys. 21 (2001), 13791409.Google Scholar
Hofbauer, F.. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II. Israel J. Math. 38 (1981), 107115.10.1007/BF02761854CrossRefGoogle Scholar
Hofbauer, F.. Piecewise invertible dynamical systems. Probab. Theory Related Fields 72 (1986), 359386.CrossRefGoogle Scholar
Hofbauer, F.. Generic properties of invariant measures for simple piecewise monotonic transformations. Israel J. Math. 59 (1987), 6480.10.1007/BF02779667CrossRefGoogle Scholar
Hofbauer, F.. Generic properties of invariant measures for continuous piecewise monotonic transformations. Monatsh. Math. 106 (1988), 301312.10.1007/BF01295288CrossRefGoogle Scholar
Hofbauer, F. and Raith, P.. Density of periodic orbit measures for transformations on the interval with two monotonic pieces. Fund. Math. 157 (1998), 221234; dedicated to the memory of Wiesław Szlenk.10.4064/fm_1998_157_2-3_1_221_234CrossRefGoogle Scholar
Hunt, B. and Ott, E.. Optimal periodic orbits of chaotic systems. Phys. Rev. Lett. 76 (1996), 2254.10.1103/PhysRevLett.76.2254CrossRefGoogle ScholarPubMed
Hunt, B. and Ott, E.. Optimal periodic orbits of chaotic systems occur at low period. Phys. Rev. E 54 (1996), 328.10.1103/PhysRevE.54.328CrossRefGoogle ScholarPubMed
Israel, R. B.. Convexity in the Theory of Lattice Gases (Princeton Series in Physics). Princeton University Press, Princeton, NJ, 1979.Google Scholar
Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. A 15 (2006), 197224.10.3934/dcds.2006.15.197CrossRefGoogle Scholar
Jenkinson, O.. Ergodic optimization in dynamical systems. Ergod. Th. & Dynam. Sys. 39 (2019), 25932618.10.1017/etds.2017.142CrossRefGoogle Scholar
Krieger, W.. On the uniqueness of the equilibrium state. Math. Syst. Theory 8 (1974/75), 97104.10.1007/BF01762180CrossRefGoogle Scholar
Kucherenko, T., Schmoll, M. and Wolf, C.. Ergodic theory on coded shift spaces. Adv. Math. 457 (2024), 109913.10.1016/j.aim.2024.109913CrossRefGoogle Scholar
Kwietniak, D., Ła̧cka, M. and Oprocha, P.. A panorama of specification-like properties and their consequences. Dynamics and Numbers (Contemporary Mathematics, 669). American Mathematical Society, Providence, RI, 2016, pp. 155186.10.1090/conm/669/13428CrossRefGoogle Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding (Cambridge Mathematical Library), 2nd edn. Cambridge University Press, Cambridge, 2021.10.1017/9781108899727CrossRefGoogle Scholar
Morris, I. D.. The Mañé–Conze–Guivarc’h lemma for intermittent maps of the circle. Ergod. Th. & Dynam. Sys. 29 (2009), 16031611.10.1017/S0143385708000837CrossRefGoogle Scholar
Morris, I. D.. Ergodic optimization for generic continuous functions. Discrete Contin. Dyn. Syst. 27 (2010), 383388.10.3934/dcds.2010.27.383CrossRefGoogle Scholar
Parry, W.. Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 5565.10.1090/S0002-9947-1964-0161372-1CrossRefGoogle Scholar
Parthasarathy, K. R.. On the category of ergodic measures. Illinois J. Math. 5 (1961), 648656.10.1215/ijm/1255631586CrossRefGoogle Scholar
Shinoda, M.. Uncountably many maximizing measures for a dense set of continuous functions. Nonlinearity 31 (2018), 21922200.CrossRefGoogle Scholar
Shinoda, M. and Takahasi, H.. Lyapunov optimization for non-generic one-dimensional expanding Markov maps. Ergod. Th. & Dynam. Sys. 40 (2020), 25712592.10.1017/etds.2019.6CrossRefGoogle Scholar
Shinoda, M. and Yamamoto, K.. Density of periodic measures and large deviation principle for generalised mod one transformations. Nonlinearity 37 (2023), 025003.10.1088/1361-6544/ad140dCrossRefGoogle Scholar
Sigmund, K.. Generic properties of invariant measures for Axiom A diffeomorphisms. Invent. Math. 11 (1970), 99109.10.1007/BF01404606CrossRefGoogle Scholar
Sigmund, K.. On the distribution of periodic points for $\beta$ -shifts. Monatsh. Math. 82 (1976), 247252.10.1007/BF01526329CrossRefGoogle Scholar
Sigmund, K.. On the connectedness of ergodic systems. Manuscripta Math. 22 (1977), 2732.10.1007/BF01182064CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982.10.1007/978-1-4612-5775-2CrossRefGoogle Scholar
Yamamoto, K.. On the density of periodic measures for piecewise monotonic maps and their coding spaces. Tsukuba J. Math. 44 (2020), 309324.10.21099/tkbjm/20204402309CrossRefGoogle Scholar
Yuan, G. and Hunt, B.. Optimal orbits of hyperbolic systems. Nonlinearity 12 (1999), 12071224.10.1088/0951-7715/12/4/325CrossRefGoogle Scholar