Hostname: page-component-857557d7f7-9f75d Total loading time: 0 Render date: 2025-12-11T18:21:00.199Z Has data issue: false hasContentIssue false

Ergodic optimization for continuous functions on non-Markov shifts

Published online by Cambridge University Press:  15 August 2025

MAO SHINODA
Affiliation:
Department of Mathematics, Ochanomizu University , 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: shinoda.mao@ocha.ac.jp)
HIROKI TAKAHASI*
Affiliation:
Department of Mathematics, Keio University , Yokohama 223-8522, Japan
KENICHIRO YAMAMOTO
Affiliation:
Department of General Education, Nagaoka University of Technology , Nagaoka 940-2188, Japan (e-mail: k_yamamoto@vos.nagaokaut.ac.jp)

Abstract

Ergodic optimization aims to describe dynamically invariant probability measures that maximize the integral of a given function. For a wide class of intrinsically ergodic subshifts over a finite alphabet, we show that the space of continuous functions on the shift space contains two disjoint subsets: one is a dense $G_\delta $ set for which all maximizing measures have ‘relatively small’ entropy; the other is the set of functions having uncountably many, fully supported ergodic maximizing measures with ‘relatively large’ entropy. This result generalizes and unifies the results of Morris [Discrete Contin. Dyn. Syst. 27 (2010), 383–388] and Shinoda [Nonlinearity 31 (2018), 2192–2200] on symbolic dynamics, and applies to a wide class of intrinsically ergodic non-Markov symbolic dynamics without the Bowen specification property, including any transitive piecewise monotonic interval map, some coded shifts, and multidimensional $\beta $-transformations. Along with these examples of application, we provide an example of an intrinsically ergodic subshift with positive obstruction entropy to specification.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baraviera, A. T., Leplaideur, R. and Lopes, A. O.. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra (IMPA Mathematical Publications, 29th Brazilian Mathematics Colloquium) Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013.Google Scholar
Bishop, E. and Phelps, R. R.. The support functionals of a convex set. Convexity (AMS Proceedings of Symposia in Pure Mathematics, 7). Ed. V. L. Klee. American Mathematical Society, Providence, RI, 1963, pp. 2735.Google Scholar
Bochi, J.. Ergodic optimization of Birkhoff averages and Lyapunov exponents. Proceedings of the International Congress of Mathematicians, Rio de Janeiro, 2018. Volume III. Invited Lectures. Ed. B. Sirakov, P. Ney de Souza and M. Viana. World Scientific Publishing, Hackensack, NJ, 2018, pp. 18251846.Google Scholar
Bousch, T.. Le poisson n’a pas d’arêtes. Ann. Inst. Henri Poincaré Probab. Stat. 36 (2000), 489508.CrossRefGoogle Scholar
Bousch, T.. La condition de Walters , Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), 59886017.Google Scholar
Bousch, T. and Jenkinson, O.. Cohomology class of dynamically non-negative ${C}^k$ functions. Invent. Math. 148 (2002), 207217.CrossRefGoogle Scholar
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401414.CrossRefGoogle Scholar
Brémont, J.. Entropy and maximizing measures of generic continuous functions. C. R. Math. Acad. Sci. 346 (2008), 199201.CrossRefGoogle Scholar
Buzzi, J.. Specification on the interval. Trans. Amer. Math. Soc. 349 (1997), 27372754.CrossRefGoogle Scholar
Buzzi, J.. Subshifts of quasi-finite type. Invent. Math. 159 (2005), 369406.CrossRefGoogle Scholar
Climenhaga, V.. Specification and towers in shift spaces. Comm. Math. Phys. 364 (2018), 441504.CrossRefGoogle Scholar
Climenhaga, V.. V. Climenhaga’s slides (accessed 21 May 2025). https://www.math.uh.edu/climenha/doc/marseille-specification.pdf.Google Scholar
Climenhaga, V.. V. Climenhaga’s Math blog (accessed 21 May 2025). https://vaughnclimenhaga.wordpress.com/2014/09/08/entropy-of-s-gap-shifts/.Google Scholar
Climenhaga, V. and Thompson, D. J.. Intrinsic ergodicity beyond specification: $\beta$ -shifts, $S$ -gap shifts, and their factors. Israel J. Math. 192 (2012), 785817.CrossRefGoogle Scholar
Climenhaga, V. and Thompson, D. J.. Equilibrium states beyond specification and the Bowen property. J. Lond. Math. Soc. 87 (2013), 401427.CrossRefGoogle Scholar
Climenhaga, V. and Thompson, D. J.. Intrinsic ergodicity via obstruction entropies. Ergod. Th. & Dynam. Sys. 34 (2014), 18161831.CrossRefGoogle Scholar
Climenhaga, V., Thompson, D. J. and Yamamoto, K.. Large deviations for systems with non-uniform structure. Trans. Amer. Math. Soc. 369 (2017), 41674192.CrossRefGoogle Scholar
Contreras, G., Lopes, A. O. and Thieullen, P.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. $\&$ Dynam. Sys. 21 (2001), 13791409.Google Scholar
Hofbauer, F.. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II. Israel J. Math. 38 (1981), 107115.CrossRefGoogle Scholar
Hofbauer, F.. Piecewise invertible dynamical systems. Probab. Theory Related Fields 72 (1986), 359386.CrossRefGoogle Scholar
Hofbauer, F.. Generic properties of invariant measures for simple piecewise monotonic transformations. Israel J. Math. 59 (1987), 6480.CrossRefGoogle Scholar
Hofbauer, F.. Generic properties of invariant measures for continuous piecewise monotonic transformations. Monatsh. Math. 106 (1988), 301312.CrossRefGoogle Scholar
Hofbauer, F. and Raith, P.. Density of periodic orbit measures for transformations on the interval with two monotonic pieces. Fund. Math. 157 (1998), 221234; dedicated to the memory of Wiesław Szlenk.CrossRefGoogle Scholar
Hunt, B. and Ott, E.. Optimal periodic orbits of chaotic systems. Phys. Rev. Lett. 76 (1996), 2254.CrossRefGoogle ScholarPubMed
Hunt, B. and Ott, E.. Optimal periodic orbits of chaotic systems occur at low period. Phys. Rev. E 54 (1996), 328.CrossRefGoogle ScholarPubMed
Israel, R. B.. Convexity in the Theory of Lattice Gases (Princeton Series in Physics). Princeton University Press, Princeton, NJ, 1979.Google Scholar
Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. A 15 (2006), 197224.CrossRefGoogle Scholar
Jenkinson, O.. Ergodic optimization in dynamical systems. Ergod. Th. & Dynam. Sys. 39 (2019), 25932618.CrossRefGoogle Scholar
Krieger, W.. On the uniqueness of the equilibrium state. Math. Syst. Theory 8 (1974/75), 97104.CrossRefGoogle Scholar
Kucherenko, T., Schmoll, M. and Wolf, C.. Ergodic theory on coded shift spaces. Adv. Math. 457 (2024), 109913.CrossRefGoogle Scholar
Kwietniak, D., Ła̧cka, M. and Oprocha, P.. A panorama of specification-like properties and their consequences. Dynamics and Numbers (Contemporary Mathematics, 669). American Mathematical Society, Providence, RI, 2016, pp. 155186.CrossRefGoogle Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding (Cambridge Mathematical Library), 2nd edn. Cambridge University Press, Cambridge, 2021.CrossRefGoogle Scholar
Morris, I. D.. The Mañé–Conze–Guivarc’h lemma for intermittent maps of the circle. Ergod. Th. & Dynam. Sys. 29 (2009), 16031611.CrossRefGoogle Scholar
Morris, I. D.. Ergodic optimization for generic continuous functions. Discrete Contin. Dyn. Syst. 27 (2010), 383388.CrossRefGoogle Scholar
Parry, W.. Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 5565.CrossRefGoogle Scholar
Parthasarathy, K. R.. On the category of ergodic measures. Illinois J. Math. 5 (1961), 648656.CrossRefGoogle Scholar
Shinoda, M.. Uncountably many maximizing measures for a dense set of continuous functions. Nonlinearity 31 (2018), 21922200.CrossRefGoogle Scholar
Shinoda, M. and Takahasi, H.. Lyapunov optimization for non-generic one-dimensional expanding Markov maps. Ergod. Th. & Dynam. Sys. 40 (2020), 25712592.CrossRefGoogle Scholar
Shinoda, M. and Yamamoto, K.. Density of periodic measures and large deviation principle for generalised mod one transformations. Nonlinearity 37 (2023), 025003.CrossRefGoogle Scholar
Sigmund, K.. Generic properties of invariant measures for Axiom A diffeomorphisms. Invent. Math. 11 (1970), 99109.CrossRefGoogle Scholar
Sigmund, K.. On the distribution of periodic points for $\beta$ -shifts. Monatsh. Math. 82 (1976), 247252.CrossRefGoogle Scholar
Sigmund, K.. On the connectedness of ergodic systems. Manuscripta Math. 22 (1977), 2732.CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982.CrossRefGoogle Scholar
Yamamoto, K.. On the density of periodic measures for piecewise monotonic maps and their coding spaces. Tsukuba J. Math. 44 (2020), 309324.CrossRefGoogle Scholar
Yuan, G. and Hunt, B.. Optimal orbits of hyperbolic systems. Nonlinearity 12 (1999), 12071224.CrossRefGoogle Scholar