Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-09-11T08:20:05.557Z Has data issue: false hasContentIssue false

Invariant tori for a class of affine Anosov mappings with a quasi-periodic forcing

Published online by Cambridge University Press:  11 September 2025

XINYU BAI
Affiliation:
School of Mathematics, https://ror.org/011ashp19 Sichuan University , Chengdu, Sichuan 610016, China (e-mail: 23210180080@m.fudan.edu.cn, lianzeng@scu.edu.cn, hangzhaoscu@163.com)
ZENG LIAN
Affiliation:
School of Mathematics, https://ror.org/011ashp19 Sichuan University , Chengdu, Sichuan 610016, China (e-mail: 23210180080@m.fudan.edu.cn, lianzeng@scu.edu.cn, hangzhaoscu@163.com)
XIAO MA*
Affiliation:
School of Mathematical Sciences, https://ror.org/04c4dkn09 University of Science and Technology of China , Hefei, Anhui, China
HANG ZHAO
Affiliation:
School of Mathematics, https://ror.org/011ashp19 Sichuan University , Chengdu, Sichuan 610016, China (e-mail: 23210180080@m.fudan.edu.cn, lianzeng@scu.edu.cn, hangzhaoscu@163.com)

Abstract

In this paper, we consider a class of affine Anosov mappings with a quasi-periodic forcing and show that there is a unique positive integer m, which only depends on the system, such that the exponential growth rate of the number of invariant tori of degree m is equal to the topological entropy.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adler, R. L., Konheim, A. G. and McAndrew, M. H.. Topological entropy. Trans. Amer. Math. Soc. 114 (1965), 309319.10.1090/S0002-9947-1965-0175106-9CrossRefGoogle Scholar
Bowen, R.. Topological entropy and Axiom A. Global Analysis, Berkeley, CA, 1968 (Proceedings of Symposia in Pure Mathematics, XIV–XVI). Ed. S.-S. Chern and S. Smale. American Mathematical Society, Providence, RI, 1968, pp. 2341.Google Scholar
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.10.1090/S0002-9947-1971-0274707-XCrossRefGoogle Scholar
Bowen, R.. Periodic points and measures for Axiom A diffeomorphisms. Trans. Amer. Math. Soc. 154 (1971), 377397.Google Scholar
Bowen, R.. Periodic orbits for hyperbolic flows. Amer. J. Math. 94 (1972), 130.CrossRefGoogle Scholar
Huang, W., Lian, Z. and Lu, K.-N.. Dynamical complexity of Anosov systems driven by a quasi-periodic forcing. Sci. China Math. 68(1) (2025), 89136.CrossRefGoogle Scholar
Katok, A.. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137173.10.1007/BF02684777CrossRefGoogle Scholar
Klünger, M.. Periodicity and Sharkovsky’s theorem for random dynamical systems. Stoch. Dyn. 1(3) (2001), 299338.10.1142/S0219493701000199CrossRefGoogle Scholar
Zhao, H.-Z. and Zheng, Z.-H.. Random periodic solutions of random dynamical systems. J. Differential Equations 246(5) (2009), 20202038.10.1016/j.jde.2008.10.011CrossRefGoogle Scholar