Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-30T02:50:43.624Z Has data issue: false hasContentIssue false

Krieger’s finite generator theorem for actions of countable groups III

Published online by Cambridge University Press:  30 October 2020

ANDREI ALPEEV
Affiliation:
Chebyshev Lab at St. Petersburg State University, 14th Line 29B, Vasilyevsky Island, St. Petersburg199178, Russia (e-mail: a.alpeev@spbu.ru)
BRANDON SEWARD
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, USA (e-mail: b.m.seward@gmail.com)

Abstract

We continue the study of Rokhlin entropy, an isomorphism invariant for probability-measure-preserving (p.m.p.) actions of countablegroups introduced in Part I [B. Seward. Krieger’s finite generator theorem for actions of countable groups I. Invent. Math. 215(1) (2019), 265–310]. In this paper we prove a non-ergodic finite generator theorem and use it to establish sub-additivity and semicontinuity properties of Rokhlin entropy. We also obtain formulas for Rokhlin entropy in terms of ergodic decompositions and inverse limits. Finally, we clarify the relationship between Rokhlin entropy, sofic entropy, and classical Kolmogorov–Sinai entropy. In particular, using Rokhlin entropy we give a new proof of the fact that ergodic actions with positive sofic entropy have finite stabilizers.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpeev, A.. On Pinsker factors for Rokhlin entropy. J. Math. Sci. 209 (2015), 826829.CrossRefGoogle Scholar
Bowen, L.. Measure conjugacy invariants for actions of countable sofic groups . J. Amer. Math. Soc. 23 (2010), 217245.10.1090/S0894-0347-09-00637-7CrossRefGoogle Scholar
Bowen, L.. Zero entropy is generic. Entropy 18(6) (2016), 220.CrossRefGoogle Scholar
Danilenko, A. and Park, K.. Generators and Bernoullian factors for amenable actions and cocycles on their orbits. Ergod. Th. & Dynam. Sys. 22 (2002), 17151745.CrossRefGoogle Scholar
Downarowicz, T.. Entropy in Dynamical Systems. Cambridge University Press, New York, NY, 2011.CrossRefGoogle Scholar
Farrell, R. H.. Representation of invariant measures. Illinois J. Math. 6 (1962), 447467.CrossRefGoogle Scholar
Gaboriau, D. and Seward, B.. Cost, ${\ell}^2$ -Betti numbers, and the sofic entropy of some algebraic actions. J. Anal. Math. 139 (2019), 165.Google Scholar
Glasner, E.. Ergodic Theory via Joinings ( Mathematical Surveys and Monographs , 101). American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
Graf, S. and Mauldin, R.. Measurable one-to-one selections and transition kernels. Amer. J. Math. 107(2) (1985), 407425.CrossRefGoogle Scholar
Hayes, B.. Relative entropy and the Pinsker product formula for sofic groups. Group. Geom. Dynam., to appear.Google Scholar
Kakutani, S.. Random ergodic theorems and Markov processes with a stable distribution. Proc. 2nd Berkeley Symp. Mathematical Statistics and Probability. University of California Press, Berkeley and Los Angeles, 1951, pp. 247261.Google Scholar
Kechris, A.. Classical Descriptive Set Theory. Springer, New York, NY, 1995.CrossRefGoogle Scholar
Kechris, A.. Global Aspects of Ergodic Group Actions ( Mathematical Surveys and Monographs , 160). American Mathematical Society, Providence, RI, 2010.10.1090/surv/160CrossRefGoogle Scholar
Kechris, A., Solecki, S.. and Todorcevic, S.. Borel chromatic numbers. Adv. Math. 141 (1999), 144.10.1006/aima.1998.1771CrossRefGoogle Scholar
Kerr, D.. Sofic measure entropy via finite partitions. Groups Geom. Dyn. 7 (2013), 617632.CrossRefGoogle Scholar
Meyerovitch, T.. Positive sofic entropy implies finite stabilizer. Entropy 18(7) (2016), 263.CrossRefGoogle Scholar
Ornstein, D. and Weiss, B.. Ergodic theory of amenable group actions I. The Rohlin lemma . Bull. Amer. Math. Soc. 2 (1980), 161164.CrossRefGoogle Scholar
Ornstein, D. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups . J. Anal. Math. 48 (1987), 1141.CrossRefGoogle Scholar
Oseledets, V. I.. Markov chains, skew products and ergodic theorems for ‘general’ dynamical systems . Theory Probab. Appl. 10(3) (1965), 499504.CrossRefGoogle Scholar
Rokhlin, V. A.. Metric classification of measurable functions . Uspekhi Mat. Nauk 12(2) (1957), 169174.Google Scholar
Rokhlin, V. A.. Lectures on the entropy theory of transformations with invariant measure. Uspekhi Mat. Nauk 22(5) (1967), 356.Google Scholar
Rudolph, D. J. and Weiss, B.. Entropy and mixing for amenable group actions . Ann. Math. 151(2) (2000), 11191150.CrossRefGoogle Scholar
Seward, B.. Krieger’s finite generator theorem for actions of countable groups I. Invent. Math. 215(1) (2019), 265310.CrossRefGoogle Scholar
Seward, B.. Krieger’s finite generator theorem for actions of countable groups II. J. Mod. Dynam. 15 (2019), 139.Google Scholar
Seward, B.. Weak containment and Rokhlin entropy. Preprint, 2016, http://arxiv.org/abs/1602.06680.Google Scholar
Seward, B.. Positive entropy actions of countable groups factor onto Bernoulli shifts. J. Amer. Math. Soc. 33(1) (2020), 57101.CrossRefGoogle Scholar
Seward, B. and Tucker-Drob, R. D.. Borel structurability on the 2-shift of a countable group. Ann. Pure Appl. Log. 167(1) (2016), 121 10.1016/j.apal.2015.07.005CrossRefGoogle Scholar
Tserunyan, A.. Finite generators for countable group actions in the Borel and Baire category settings . Adv. Math. 269 (2015), 585646.CrossRefGoogle Scholar
Varadarajan, V. S.. Groups of automorphisms of Borel spaces . Trans. Amer. Math. Soc. 109 (1963), 191220.CrossRefGoogle Scholar