Hostname: page-component-5b777bbd6c-sbgtn Total loading time: 0 Render date: 2025-06-18T13:23:09.233Z Has data issue: false hasContentIssue false

On quasiconformal non-equivalence of gasket Julia sets and limit sets

Published online by Cambridge University Press:  09 June 2025

YUSHENG LUO
Affiliation:
Department of Mathematics, https://ror.org/05bnh6r87Cornell University, 212 Garden Ave, Ithaca, NY 14853, USA (e-mail: yusheng.s.luo@gmail.com)
YONGQUAN ZHANG*
Affiliation:
Institute for Mathematical Sciences, https://ror.org/05qghxh33Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794-3660, USA

Abstract

This paper studies quasiconformal non-equivalence of Julia sets and limit sets. We proved that any Julia set is quasiconformally different from the Apollonian gasket. We also proved that any Julia set of a quadratic rational map is quasiconformally different from the gasket limit set of a geometrically finite Kleinian group.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bourgain, J. and Fuchs, E.. A proof of the positive density conjecture for integer Apollonian circle packings. J. Amer. Math. Soc. 24(4) (2011), 945967.10.1090/S0894-0347-2011-00707-8CrossRefGoogle Scholar
Bourgain, J. and Kontorovich, A.. On the local-global conjecture for integral Apollonian gaskets. Invent. Math. 196(3) (2014), 589650.10.1007/s00222-013-0475-yCrossRefGoogle Scholar
Bogachev, N., Kolpakov, A. and Kontorovich, A.. Kleinian sphere packings, reflection groups, and arithmeticity. Math. Comp. 93 (2024), 505521.10.1090/mcom/3858CrossRefGoogle Scholar
Bonk, M., Kleiner, B. and Merenkov, S.. Rigidity of Schottky set. Amer. J. Math. 131(2) (2009), 409443.10.1353/ajm.0.0045CrossRefGoogle Scholar
Bonk, M., Lyubich, M. and Merenkov, S.. Quasisymmetries of Sierpiśki carpet Julia sets. Adv. Math. 301 (2016), 383422.10.1016/j.aim.2016.06.007CrossRefGoogle Scholar
Bonk, M. and Merenkov, S.. Quasisymmetric rigidity of square Sierpinśki carpets. Ann. of Math. (2) 177 (2013), 591643.10.4007/annals.2013.177.2.5CrossRefGoogle Scholar
Cui, G. and Tan, L.. Hyperbolic-parabolic deformations of rational maps. Sci. China Math. 61 (2018), 21572220.10.1007/s11425-018-9426-4CrossRefGoogle Scholar
Douady, A. and Hubbard, J.. A proof of Thurston’s topological characterization of rational functions. Acta Math. 171 (1993), 263297.10.1007/BF02392534CrossRefGoogle Scholar
Dudko, D.. Matings with laminations. Preprint, 2011, arXiv:1112.4780.Google Scholar
Graham, R., Lagarias, J., Mallows, C., Wilks, A. and Yan, C.. Apollonian circle packings: number theory. J. Number Theory 100 (2003), 145.10.1016/S0022-314X(03)00015-5CrossRefGoogle Scholar
Graham, R., Lagarias, J., Mallows, C., Wilks, A. and Yan, C.. Apollonian circle packings: geometry and group theory I. The Apollonian group. Discrete Comput. Geom. 34 (2005), 547585.10.1007/s00454-005-1196-9CrossRefGoogle Scholar
Haïssinsky, P. and Tan, L.. Convergence of pinching deformations and matings of geometrically finite polynomials. Fund. Math. 181 (2004), 143188.10.4064/fm181-2-4CrossRefGoogle Scholar
Kapovich, M. and Kontorovich, A.. On superintegral Kleinian sphere packings, gugs, and arithmetic groups. J. Reine Angew. Math. 798 (2023), 105142.Google Scholar
Kontorovich, A. and Nakamura, K.. Geometry and arithmetic of crystallographic sphere packings. Proc. Natl. Acad. Sci. USA 116(2) (2019), 436441.10.1073/pnas.1721104116CrossRefGoogle ScholarPubMed
Kontorovich, A. and Oh, H.. Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Amer. Math. Soc. 24 (2011), 603648.10.1090/S0894-0347-2011-00691-7CrossRefGoogle Scholar
Lodge, R., Luo, Y. and Mukherjee, S.. Circle packings, kissing reflection groups and critically fixed anti-rational maps. Forum Math. Sigma 10 (2022), Paper no. e3.10.1017/fms.2021.81CrossRefGoogle Scholar
Lodge, R., Luo, Y. and Mukherjee, S.. On deformation space analogies between Kleinian reflection groups and antiholomorphic rational maps. Geom. Funct. Anal. 32 (2022), 14281485.10.1007/s00039-022-00621-8CrossRefGoogle Scholar
Lodge, R., Lyubich, M., Merenkov, S. and Mukherjee, S.. On dynamical gaskets generated by rational maps, Kleinian groups, and Schwarz reflections. Conform. Geom. Dyn. 27(1) (2023), 154.10.1090/ecgd/379CrossRefGoogle Scholar
Luo, J.. Combinatorics and holomorphic dynamics: captures, matings and Newton’s method . PhD Thesis, Cornell University, 1995.Google Scholar
Luo, Y. and Zhang, Y.. Circle packings, renormalizations and subdivision rules. Preprint, 2023, arXiv:2308.13151.Google Scholar
Maskit, B.. Intersections of component subgroups of Kleinian groups. Discontinuous Groups and Riemann Surfaces: Proceedings of the 1973 Conference at the University of Maryland (Annals of Mathematical Statistics, 79). Ed. Greenberg, L.. Princeton University Press, Princeton, NJ, 1974, pp. 349367.10.1515/9781400881642-028CrossRefGoogle Scholar
McMullen, C.. Iteration on Teichmüller space. Invent. Math. 99 (1990), 425454.10.1007/BF01234427CrossRefGoogle Scholar
Merenkov, S.. Local rigidity for hyperbolic groups with Sierpiński carpet boundaries. Compos. Math. 150(11) (2014), 19281938.10.1112/S0010437X14007490CrossRefGoogle Scholar
Milnor, J.. Geometry and dynamics of quadratic rational maps, with an appendix by the author and Lei Tan. Exp. Math. 2(1) (1993), 3783.10.1080/10586458.1993.10504267CrossRefGoogle Scholar
Milnor, J.. Dynamics in One Complex Variable (Annals of Mathematics Studies, 160). Princeton University Press, Princeton, NJ, 2006.Google Scholar
Oh, H. and Shah, N.. The asymptotic distribution of circles in the orbits of Kleinian groups. Invent. Math. 187 (2012), 135.10.1007/s00222-011-0326-7CrossRefGoogle Scholar
Pilgrim, K. and Tan, L.. Combining rational maps and controlling obstructions. Ergod. Th. & Dynam. Sys. 18 (1998), 221245.10.1017/S0143385798100329CrossRefGoogle Scholar
Qiu, W., Yang, F. and Zeng, J.. Quasisymmetric geometry of Sierpiński carpet Julia sets. Fund. Math. 244 (2019), 73107.10.4064/fm494-12-2017CrossRefGoogle Scholar
Sullivan, D.. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (Annals of Mathematical Statistics, 97). Ed. Kra, I. and Maskit, B.. Princeton University Press, Princeton, NJ, 1981, pp. 465496.10.1515/9781400881550-035CrossRefGoogle Scholar
Tan, L.. Matings of quadratic polynomials. Ergod. Th. & Dynam. Sys. 12 (1992), 589620.Google Scholar
Thurston, W.. Hyperbolic structures on 3-manifolds I: deformation of acylindrical manifolds. Ann. of Math. (2) 124 (1986), 203246.10.2307/1971277CrossRefGoogle Scholar
Wittner, B.. On the bifurcation loci of rational maps of degree two . PhD Thesis, Cornell University, 1988.Google Scholar
Zhang, Y.. Elementary planes in the Apollonian orbifold. Trans. Amer. Math. Soc. 376(1) (2023), 453506.Google Scholar