Hostname: page-component-5b777bbd6c-7sgmh Total loading time: 0 Render date: 2025-06-18T09:09:48.378Z Has data issue: false hasContentIssue false

Agafonov’s theorem for finite and infinite alphabets and probability distributions different from equidistribution

Published online by Cambridge University Press:  21 May 2025

THOMAS SEILLER*
Affiliation:
CNRS, LIPN – UMR 7030 CNRS & Université Sorbonne Paris Nord, Villetaneuse 93439, France
JAKOB GRUE SIMONSEN
Affiliation:
IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark (e-mail: jags@itu.dk)

Abstract

An infinite sequence $\alpha $ over an alphabet $\Sigma $ is $\mu $-distributed with respect to a probability map $\mu $ if, for every finite string w, the limiting frequency of w in $\alpha $ exists and equals $\mu (w)$. We prove the following result for any finite or countably infinite alphabet $\Sigma $: every finite-state selector over $\Sigma $ selects a $\mu $-distributed sequence from every $\mu $-distributed sequence if and only if $\mu $ is induced by a Bernoulli distribution on $\Sigma $, that is, a probability distribution on the alphabet extended to words by taking the product. The primary—and remarkable—consequence of our main result is a complete characterization of the set of probability maps, on finite and infinite alphabets, for which finite-state selection preserves $\mu $-distributedness. As a consequence, the shift-invariant measures $\mu $ on $\Sigma ^{\omega }$, such that any finite-state selector preserves the property of genericity for $\mu $, are exactly the positive Bernoulli measures.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agafonov, V. N.. Normal sequences and finite automata. Sov. Math. Dokl. 9 (1968), 324325 (in English), originally published in Russian as [57].Google Scholar
Airey, D. and Mance, B.. Normality preserving operations for Cantor series expansions and associated fractals, I. Illinois J. Math. 59(3) (2015), 531543.10.1215/ijm/1475266396CrossRefGoogle Scholar
Airey, D. and Mance, B.. Hotspot lemmas for noncompact spaces. Math. Notes 108 (2020), 434439.10.1134/S0001434620090126CrossRefGoogle Scholar
Aistleitner, C., Becher, V., Scheerer, A.-M. and Slaman, T.. On the construction of absolutely normal numbers. Acta Arith. 180 (2017), 333346.10.4064/aa170213-5-8CrossRefGoogle Scholar
Becher, V., Carton, O. and Heiber, P. A.. Normality and automata. J. Comput. System Sci. 81(8) (2015), 15921613.10.1016/j.jcss.2015.04.007CrossRefGoogle Scholar
Becher, V. and Heiber, P. A.. Normal numbers and finite automata. Theoret. Comput. Sci. 477 (2013), 109116.10.1016/j.tcs.2013.01.019CrossRefGoogle Scholar
Bergelson, V., Downarowicz, T. and Vandehey, J.. Deterministic functions on amenable semigroups and a generalization of the Kamae–Weiss theorem on normality preservation. JAMA 148 (2022), 213286.Google Scholar
Blanchard, F.. Non literal tranducers and some problems of normality. J. Théor. Nombres Bordeaux 5(2) (1993), 303321.10.5802/jtnb.95CrossRefGoogle Scholar
Blanchard, F., Dumont, J. M. and Thomas, A.. Generic sequences, transducers and multiplication of normal numbers. Israel J. Math. 80 (1992), 257287.10.1007/BF02808071CrossRefGoogle Scholar
Bontemps, D., Boucheron, S. and Gassiat, E.. About adaptive coding on countable alphabets. IEEE Trans. Inform. Theory 60(2) (2014), 808821.CrossRefGoogle Scholar
Borel, É.. Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo (2) 27 (1909), 247271.10.1007/BF03019651CrossRefGoogle Scholar
Boucheron, S., Garivier, A. and Gassiat, E.. Coding on countably infinite alphabets. Trans. Inf 55(1) (2009), 358373.10.1109/TIT.2008.2008150CrossRefGoogle Scholar
Broglio, A. and Liardet, P.. Predictions with automata. Symbolic dynamics and its applications. Contemp. Math. 135 (1992), 111124; also appeared in Proceedings of the AMS Conference (New Haven, CT, USA, 1991) in honor of R. L. Adler.10.1090/conm/135/1185084CrossRefGoogle Scholar
Carton, O.. A direct proof of Agafonov’s theorem and an extension to shifts of finite type. Preprint, 2020, arXiv:2005.00255.Google Scholar
Carton, O. and Vandehey, J.. Preservation of normality by non-oblivious group selection. Theory Comput. Syst. 65 (2020), 241256.10.1007/s00224-020-09998-1CrossRefGoogle Scholar
Cassels, J. W. S.. On a paper of Niven and Zuckerman. Pacific J. Math. 2(4) (1952), 555557.10.2140/pjm.1952.2.555CrossRefGoogle Scholar
Champernowne, D. G.. The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. (2) s1-8(4) (1933), 254260.10.1112/jlms/s1-8.4.254CrossRefGoogle Scholar
Church, A.. On the concept of a random sequence. Bull. Amer. Math. Soc. (N.S.) 46(2) (1940), 130135.10.1090/S0002-9904-1940-07154-XCrossRefGoogle Scholar
Copeland, A. H.. Admissible numbers in the theory of probability. Amer. J. Math. 50(4) (1928), 535552.CrossRefGoogle Scholar
Copeland, A. H.. Point set theory applied to the random selection of the digits of an admissible number. Amer. J. Math. 58(1) (1936), 181192.10.2307/2371066CrossRefGoogle Scholar
Copeland, A. H. and Erdös, P.. Note on normal numbers. Bull. Amer. Math. Soc. (N.S.) 52(10) (1946), 857860.10.1090/S0002-9904-1946-08657-7CrossRefGoogle Scholar
Davenport, H. and Erdös, P.. Note on normal decimals. Canad. J. Math. 4 (1952), 5863.10.4153/CJM-1952-005-3CrossRefGoogle Scholar
Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math. Systems Theory 1 (1967), 149.Google Scholar
Heersink, B. and Vandehey, J.. Continued fraction normality is not preserved along arithmetic progressions. Arch. Math. (Basel) 106 (2015), 363370.10.1007/s00013-016-0885-3CrossRefGoogle Scholar
Holzer, M., Kutrib, M. and Malcher, A.. Multi-head finite automata: characterizations, concepts and open problems Proc. Int. Workshop on the Complexity of Simple Programs (CSP 2008, Cork, Ireland, 6–7 December 2008) (Electronic Proceedings in Theoretical Computer Science, 1). Ed. T. Neary, D. Woods, A. K. Seda and N. Murphy. EPTCS, 2009, pp. 93107.CrossRefGoogle Scholar
Hosseini, M. and Santhanam, N.. On redundancy of memoryless sources over countable alphabets. Proc. 2014 Int. Symp. on Information Theory and its Applications (Victoria, BC, Canada, 26--29 October 2014). IEEE, Piscataway, NJ, 2014, pp. 299303.Google Scholar
Kamae, T. and Weiss, B.. Normal numbers and selection rules. Israel J. Math. 21 (1975), 101110.10.1007/BF02760789CrossRefGoogle Scholar
Kamke, E.. Über neuere begründungen der Wahrscheinlichkeitsrechnung. Jahresber. Dtsch. Math.-Ver. 42 (1933), 1427.Google Scholar
Levin, M.. Absolutely normal numbers. Moscow Univ. Math. Bull. 34(1) (1979), 3239.Google Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Madritsch, M.. Normal numbers and symbolic dynamics. Sequences, Groups and Number Theory (Trends in Mathematics). Ed. V. Berthé and M. Rigo. Springer International Publishing, Cham, 2018, pp. 271329.10.1007/978-3-319-69152-7_8CrossRefGoogle Scholar
Madritsch, M., Scheerer, A.-M. and Tichy, R.. Computable absolutely Pisot normal numbers. Acta Arith. 184 (2018), 729.10.4064/aa8661-8-2017CrossRefGoogle Scholar
Madritsch, M. G. and Mance, B., Construction of $\mu$ -normal sequences. Monatsh. Math. 179 (2016), 259280.10.1007/s00605-015-0837-1CrossRefGoogle Scholar
Mance, B.. Cantor series constructions of sets of normal numbers. Acta Arith. 156 (2012), 223245.CrossRefGoogle Scholar
Merkle, W. and Reimann, J.. Selection functions that do not preserve normality. Theory Comput. Syst. 39(5) (2006), 685697.10.1007/s00224-005-1253-zCrossRefGoogle Scholar
Nakai, Y. and Shiokawa, I.. Discrepancy estimates for a class of normal numbers. Acta Arith. 62(3) (1992), 271284.10.4064/aa-62-3-271-284CrossRefGoogle Scholar
Niven, I. and Zuckerman, H. S.. On the definition of normal numbers. Pacific J. Math. 1(1) (1951), 103109.10.2140/pjm.1951.1.103CrossRefGoogle Scholar
O’Connor, M. G.. An unpredictability approach to finite-state randomness. J. Comput. System Sci. 37(3) (1988), 324336.10.1016/0022-0000(88)90011-6CrossRefGoogle Scholar
Pollack, P. and Vandehey, J.. Some normal numbers generated by arithmetic functions. Canad. Math. Bull. 58 (2013), 160173.10.4153/CMB-2014-047-2CrossRefGoogle Scholar
Postnikova, L. P.. On the connection between the concepts of collectives of Mises–Church and normal Bernoulli sequences of symbols. Theory Probab. Appl. 6(2) (1961), 211213; translation of [61] by E. Nishiura.10.1137/1106028CrossRefGoogle Scholar
Reichenbach, H.. Axiomatik der wahrscheinlichkeitsrechnung. Math. Z. 34(1) (1932), 568619.10.1007/BF01180610CrossRefGoogle Scholar
Reichenbach, H.. Les fondements logiques du calcul des probabilités. Ann. Inst. Henri Poincaré 7(1937), 267348.Google Scholar
Scheerer, A.-M.. Computable absolutely normal numbers and discrepancies. Math. Comp. 86 (2015), 29112926.10.1090/mcom/3189CrossRefGoogle Scholar
Schnorr, C.-P. and Stimm, H.. Endliche automaten und zufallsfolgen. Acta Inform. 1 (1972), 345359.10.1007/BF00289514CrossRefGoogle Scholar
Serfozo, R.. Basics of Applied Stochastic Processes (Probability and Its Applications). Springer-Verlag, Berlin, 2009.10.1007/978-3-540-89332-5CrossRefGoogle Scholar
Shen, A.. Automatic Kolmogorov complexity and normality revisited. Fundamentals of Computation Theory (Proc. 21st Int. Symp., FCT 2017, Bordeaux, France, 11–13 September 2017) (Lecture Notes in Computer Science, 10472). Ed. Klasing, R. and Zeitoun, M.. Springer, Berlin, 2017, pp. 418430.Google Scholar
Shields, P.. The Theory of Bernoulli Shifts. University of Chicago Press, Chicago, 1973.Google Scholar
Sierpinski, W.. Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’une tel nombre. Bull. Soc. Math. France 45 (1917), 125132.10.24033/bsmf.977CrossRefGoogle Scholar
Silva, J. F. and Piantanida, P.. Almost lossless variable-length source coding on countably infinite alphabets. Proc. 2016 IEEE Int. Symp. on Information Theory (ISIT) (Barcelona, Spain, 2016). IEEE, Piscataway, NJ, 2016, pp. 15.Google Scholar
Tornier, E.. Wahrscheinlichkeitsrechnung und Zahlentheorie. Erste Mitteilung. J. Reine Angew. Math. 1929(160) (1929), 177198.10.1515/crll.1929.160.177CrossRefGoogle Scholar
Vandehey, J.. The normality of digits in almost constant additive functions, Monatsh. Math. 171 (2012), 481497.10.1007/s00605-012-0453-2CrossRefGoogle Scholar
Vandehey, J.. New normality constructions for continued fraction expansions. J. Number Theory 166 (2016), 424451.10.1016/j.jnt.2016.01.030CrossRefGoogle Scholar
Vandehey, J.. Uncanny subsequence selections that generate normal numbers. Unif. Distrib. Theory 12 (2017), 6575.10.1515/udt-2017-0015CrossRefGoogle Scholar
Von Mises, R.. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z. 5(191) (1919), 5299.10.1007/BF01203155CrossRefGoogle Scholar
Wall, D. D.. Normal numbers. PhD Thesis, University of California, Berkeley, CA, 1949.Google Scholar
Wang, X. and Kamae, T.. Selection rules preserving normality. Israel J. Math. 232 (2019), 427442.10.1007/s11856-019-1879-1CrossRefGoogle Scholar
Агафонов, В. Н.. Нормальные последовательности и конечные автоматы. Докл. АН СССР 179(2) (1968), 255256.Google ScholarPubMed
Агафонов, В. Н.. Нормальные последовательности и конечные автоматы. Hayka, АН СССР 20 (1968), 123129.Google Scholar
Постников, А. Г.. Арифметическое моделирование случайных процессов. Тр. МИАН СССР 57 (1960), 384.Google ScholarPubMed
Постников, А. Г. and Пятещкий, И. И. Нормальные по Вернулли последовательности знаков. Изв. АН СССР. Сер. матем. 21(4) (1957), 501514.Google ScholarPubMed
Постникова, Л. П.. О связи понятий коллектива Мизеса-Черча и нормальной по Вернулли последовательности знаков. Теория вероятн. и ее примен. 6(2) (1961), 232234.Google ScholarPubMed