Skip to main content

Any counterexample to Makienko’s conjecture is an indecomposable continuum


Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ→ℂ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.

Hide All
[1]Beardon A. F.. Iteration of Rational Functions. Springer, Berlin, 1991.
[2]Childers D. K., Mayer J. C. and Rogers Jr J. T.. Indecomposable continua and the Julia sets of polynomials. II. Topology Appl. 153(10) (2006), 15931602.
[3]Childers D. K., Mayer J. C., Murat Tuncali H. and Tymchatyn E. D.. Indecomposable continua and the Julia sets of rational maps. Complex Dynamics (Contemporary Mathematics, 396). American Mathematical Society, Providence, RI, 2006, pp. 120.
[4]Domínguez P. and Fagella N.. Residual Julia sets of rational and transcendental functions. Transcendental Dynamics and Complex Analysis (London Mathematical Society Lecture Note Series, 348). Cambridge University Press, Cambridge, 2007.
[5]Devaney R. L., Look D. M. and Uminsky D.. The escape trichotomy for singularly perturbed rational maps. Indiana Univ. Math. J. 54(6) (2005), 16211634.
[6]Eremenko A. E. and Lyubich M. Yu. The dynamics of analytic transformations. Leningrad Math. J. 1(3) (1990), 562634.
[7]Kuratowski C.. Sur la structure des frontières communes à deux régions. Fund. Math. 12(1) (1928), 2142.
[8]Mayer J. C. and Rogers Jr J. T.. Indecomposable continua and the Julia sets of polynomials. Proc. Amer. Math. Soc. 117(3) (1993), 795802.
[9]McMullen C.. Automorphism of rational maps. Holomorphic Functions and Moduli, I (Mathematical Sciences Research Institute Publications, 10). Springer, New York, 1988,pp. 3160.
[10]Milnor J. and Lei T.. A “Sierpiński carpet” as Julia set. Appendix F in Geometry and dynamics of quadratic rational maps. Experiment. Math. 2(1) (1993), 3783.
[11]Morosawa S.. On the residual Julia sets of rational functions. Ergod. Th. & Dynam. Sys. 17(1) (1997), 205210.
[12]Morosawa S.. Julia sets of subhyperbolic rational functions. Complex Var. Theory Appl. 41(2) (2000), 151162.
[13]Ng T. W., Zheng J. H. and Choi Y. Y.. Residual Julia sets of meromorphic functions. Math. Proc. Cambridge Philos. Soc. 141(1) (2006), 113126.
[14]Rogers Jr J. T.. Diophantine conditions imply critical points on the boundaries of Siegel disks of polynomials. Comm. Math. Phys. 195(1) (1998), 175193.
[15]Qiao J.. Topological complexity of Julia sets. Sci. China Ser. A 40(11) (1997), 11581165.
[16]Sun Y. and Yang C.C.. Buried points and Lakes of Wada continua. Discrete Contin. Dyn. Syst. 9(2) (2003), 379382.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 40 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th January 2018. This data will be updated every 24 hours.