Skip to main content Accessibility help

Automorphisms of blowups of threefolds being Fano or having Picard number 1


Let $X_{0}$ be a smooth projective threefold which is Fano or which has Picard number 1. Let $\unicode[STIX]{x1D70B}:X\rightarrow X_{0}$ be a finite composition of blowups along smooth centers. We show that for ‘almost all’ of such $X$ , if $f\in \text{Aut}(X)$ , then its first and second dynamical degrees are the same. We also construct many examples of blowups $X\rightarrow X_{0}$ , on which any automorphism is of zero entropy. The main idea is that, because of the log-concavity of dynamical degrees and the invariance of Chern classes under holomorphic automorphisms, there are some constraints on the nef cohomology classes. We will also discuss a possible application of these results to a threefold constructed by Kenji Ueno.

Hide All
[1] Abramovich, D., Karu, K., Matsuki, K. and Wlodarczyk, J.. Torification and factorization of birational maps. J. Amer. Math. Soc. 15(3) (2002), 531572.
[2] Bayraktar, T. and Cantat, S.. Constraints on automorphism groups of higher dimensional manifolds. J. Math. Anal. Appl. 405 (2013), 209213.
[3] Bedford, E.. The dynamical degrees of a mapping. Proceedings of the Workshop Future Directions in Difference Equations (Colección Congresos, 69) . Servizo de Publicacións da Universidade de Vigo, Vigo, 2011, pp. 313.
[4] Bedford, E. and Kim, K.-H.. Dynamics of rational surface automorphisms: rotation domains. Amer. J. Math. 134(2) (2012), 379405.
[5] Bedford, E. and Kim, K.-H.. Continuous families of rational surface automorphisms with positive entropy. Math. Ann. 348(3) (2010), 667688.
[6] Bedford, E. and Kim, K.-H.. Dynamics of rational surface automorphisms: linear fractional recurrences. J. Geom. Anal. 19(3) (2009), 553583.
[7] Campana, F.. Remarks on an example of K. Ueno. Series of Congress Reports, Classification of Algebraic Varieties. Eds. Faber, C., van der Geer, G. and Looijenga, E.. European Mathematical Society, Zürich, 2011, pp. 115121.
[8] Cantat, S.. Dynamique des automorphismes des surfaces K3. Acta Math. 187(1) (2001), 157.
[9] Cantat, S. and Dolgachev, I.. Rational surfaces with a large group of automorphisms. J. Amer. Math. Soc. 25(3) (2012), 863905.
[10] Colliot-Thélène, J.-L.. Rationalité d’un fibré en coniques. Manuscripta Math. 147(3–4) (2015), 305310.
[11] Catanese, F., Oguiso, K. and Truong, T. T.. Unirationality of Ueno-Campana’s threefold. Manuscripta Math. 145(3–4) (2014), 399406.
[12] Demailly, J.-P.. Complex analytic and differential geometry, Online book, version of Thursday 10 September 2009.
[13] Demailly, J.-P. and Paun, M.. Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. of Math. (2) 159(3) (2004), 12471274.
[14] Déserti, J. and Grivaux, J.. Automorphisms of rational surfaces with positive entropy. Indiana Univ. Math. J. 60(5) (2011), 15891622.
[15] Diller, J.. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J. 60(2) (2011), 409440 . With an appendix by Igor Dolgachev.
[16] Dinh, T.-C.. Tits alternative for automorphism groups of compact Kähler manifolds. Acta Math. Vietnam. 37(4) (2012), 513529.
[17] Dinh, T.-C. and Nguyen, V.-A.. Comparison of dynamical degrees for semi-conjugate meromorphic maps. Comment. Math. Helv. 86(4) (2011), 817840.
[18] Dinh, T.-C., Nguyen, V.-A. and Truong, T. T.. On the dynamical degrees of meromorphic maps preserving a fibration. Comm. Contemp. Math. 14(6) (2012),1250042 , 18 pp.
[19] Dinh, T.-C. and Sibony, N.. Une borne supérieure pour l’entropie topologique d’une application rationnelle. Ann. of Math. (2) 161(3) (2005), 16371644.
[20] Gromov, M.. On the entropy of holomorphic maps. Enseign. Math. 49 (2003), 217235, Manuscript (1977).
[21] Griffiths, P. and Harris, J.. Principles of Algebraic Geometry. Wiley, New York, 1978.
[22] Hartshorne, R.. Algebraic Geometry (Graduate Texts in Mathematics, 52) . Springer, New York, 1977.
[23] McMullen, C.. Dynamics with small entropy on projective K3 surfaces. Preprint.
[24] McMullen, C.. K3 surfaces, entropy and glue. J. Reine Angew. Math. 658 (2011), 125.
[25] McMullen, C.. Dynamics on blowups of the projective plane. Publ. Math. Inst. Hautes Études Sci. 105 (2007), 4989.
[26] McMullen, C.. Dynamics on K3 surfaces: Salem numbers and Siegel disks. J. Reine Angew. Math. 545 (2002), 201233.
[27] Oguiso, K. and Perroni, F.. Automorphisms of rational manifolds of positive entropy with Siegel disks. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22(4) (2011), 487504.
[28] Oguiso, K.. Free automorphisms of positive entropy on smooth Kähler surfaces. Algebraic Geometry in East Asia, Taipei 2011 (Advanced Studies in Pure Mathematics, 65) . Mathematical Society of Japan, Tokyo, 2015, pp. 187199.
[29] Oguiso, K.. The third smallest Salem number in automorphisms of K3 surfaces. Algebraic Geometry in East Asia, Seoul 2008 (Advanced Studies in Pure Mathematics, 60) . Mathematical Society, Japan, Tokyo, 2010, pp. 331360.
[30] Oguiso, K.. A remark on dynamical degrees of automorphisms of hyperkähler manifolds. Manuscripta Math. 130(1) (2009), 101111.
[31] Oguiso, K.. Automorphisms of hyperkähler manifolds in the view of topological entropy. Algebraic Geometry (Contemporary Mathematics, 422) . American Mathematical Society, Providence, RI, 2007, pp. 173185.
[32] Oguiso, K. and Truong, T. T.. Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy. J. Math. Sci. Univ. Tokyo 22(1) (2015), 361385 (Kodaira centennial issue).
[33] Reschke, P.. Salem numbers and automorphisms of complex surfaces. Math. Res. Lett. 19(2) (2012), 475482.
[34] Truong, T. T.. On automorphisms of blowups of projective manifolds. Preprint, arXiv:1301.4957.
[35] Truong, T. T.. On automorphisms of blowups of $\mathbb{P}^{3}$ . Preprint, arXiv:1202.4224.
[36] Ueno, K.. Classification theory of algebraic varieties and compact complex spaces. Notes written in collaboration with P. Cherenack. (Lecture Notes in Mathematics, 439) . Springer, Berlin, 1975.
[37] Yomdin, Y.. Volume growth and entropy. Israel J. Math. 57 (1987), 285300.
[38] Zhang, D.-Q.. The g-periodic subvarieties for an automorphism g of positive entropy on a compact Kähler manifold. Adv. Math. 223(2) (2010), 405415.
[39] Zhang, D.-Q.. Dynamics of automorphisms on projective complex manifolds. J. Differential Geom. 82(3) (2009), 691722.
[40] Zhang, D.-Q.. Automorphism groups and anti-pluricanonical curves. Math. Res. Lett. 15(1) (2008), 163183.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed