Skip to main content

Basins of attraction near homoclinic tangencies

  • J.C. Tatjer (a1) and C. Simó (a1)

We describe the behaviour of the basin of attraction of the attracting periodic points which appear near a non-degenerate tangential homoclinic point of a dissipative saddle fixed point for one-parameter families of planar diffeomorphisms. This behaviour depends on certain relations between the eigenvalues of the saddle point and on the geometry of the tangency.

Hide All
[1]Benedicks, M. & Carlesson, L.. The dynamics of the Hénon map. Ann. Math. 133 (1991), 73169.
[2]Chow, S. N. & Hale, J. K.. Methods of Bifurcation Theory. Springer: New York, 1982.
[3]Da Silva Ritter, G. L., Ozorio de Almeida, A. M & Douady, R.. Analytical determination of unstable periodic orbits in area preserving maps. Physica 29D (1987), 181190.
[4]Franceschini, V. & Russo, L.. Stable and unstable manifolds on the Hénon mapping. J. Stat. Phys. 25 (1981).
[5]Gavrilov, N. K. & Sitnikov, L. P.. On the three-dimensional dynamical systems close to a system with a structurally unstable homoclinic curve. (I) Math. USSR Sbornik 17 (1972), 467485;
Gavrilov, N. K. & Sitnikov, L. P.. On the three-dimensional dynamical systems close to a system with a structurally unstable homoclinic curve. (II) Math. USSR Sbornik 19 (1973), 138156.
[6]Hartman, P.. Ordinary Differential Equations. Reprint of the 2nd ed. Birkhauser: Boston, 1982.
[7]Irwin, M. C.. On the smoothness of the composition map. Quart. J. Math. Oxford (2) 23 (1972), 113133.
[8]Marsden, J. E. & McCracken, M.. The Hopf Bifurcation and its Applications. Springer: Berlin, 1976.
[9]Mora, L. & Viana, M.. Abundance of strange attractors. Acta Math. 171 (1993), 171.
[10]Newhouse, S.. Lectures on dynamical systems. Dynamical Systems. CIME Lectures Bressanone (Italy). Birkhauser: Boston, 1980.
[11]Newhouse, S.. The creation of non trivial recurrence in the dynamics of diffeomorphisms. In Comportement Chaotique des Systèmes Déterministes (Les Houches 1981). Iooss, G., Helleman, R. and Stora, R., eds. North-Holland: Amsterdam, 1983.
[12]Newhouse, S.. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math. IHES 50 (1979), 101151.
[13]Palis, J. & Melo, W. de. Geometric Theory of Dynamical Systems. An Introduction. Springer: New York, 1982.
[14]Palis, J. & Takens, F.. Homoclinic bifurcations and hyperbolic dynamics. XVI Colóquio Brasileiro de Matemática (1985). IMPA/CNPq Rio de Janeiro (1987).
[15]Robinson, C.. Bifurcations to infinitely many sinks. Commun. Math. Phys. 90 (1983), 433459.
[16]Simó, C.. On the Hénon-Pomeau attractor. J. Stat. Phys. 21, (1979).
[17]Sotomayor, J.. Liçoes sobre Equaçōes Diferenciais Ordinarias. IMPA, Projeto Euclides: Rio de Janeiro, 1979.
[18]Tatjer, J. C.. Estudi del fenòmen de Newhouse per a difeomorfismes dissipatius del pla. Master Thesis. Universitat de Barcelona (1984).
[19]Tatjer, J. C.. Invariant manifolds and bifurcations for one-dimensional and two-dimensional dissipative maps. PhD Thesis. Universitat de Barcelona (1990).
[20]Tatjer, J. C.. Codimension two bifurcations near homoclinic tangencies of second order. Proc. European Conf. on Iteration Theory (ECIT 91), (Lisboa (Portugal)). Lampreia, J.P., Llibre, J., Mira, C., Ramos, J. Sousa and Targonski, Gy., eds. World Scientific: Singapore, 1992. pp 306318.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 70 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th April 2018. This data will be updated every 24 hours.