Skip to main content
×
Home
    • Aa
    • Aa

Bifurcations of dynamic rays in complex polynomials of degree two

  • Pau Atela (a1)
Abstract
Abstract

In the study of bifurcations of the family of degree-two complex polynomials, attention has been given mainly to parameter values within the Mandelbrot set M (e.g., connectedness of the Julia set and period doubling). The reason for this is that outside M, the Julia set is at all times a hyperbolic Cantor set. In this paper weconsider precisely this, values of the parameter in the complement of M. We find bifurcations occurring not on the Julia set itself but on the dynamic rays landing on itfrom infinity. As the parameter crosses the external rays of M, in the dynamic plane the points of the Julia set gain and lose dynamic rays. We describe these bifurcations with the aid of a family of circle maps and we study in detail the case of the fixed points.

Copyright
References
Hide All
[A]Atela P.. The Mandelbrot set and σ-automorphisms of quotients of the shift. Trans. Amer. Math. Soc. to appear.
[B]Blanchard P.. Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11 (1984), 85141.
[Bo]Boyland P.. Bifurcations of circle Maps: Arnol'd tongues, bistability and rotation intervals. Commun. Math. Phys. 106 (1986), 353381.
[Br]Branner B.. The Mandelbrot set. In: Chaos and Fractals, Proc. Symp. in Applied Mathematics, 39, Devaney R. and Keen L., eds, Amer. Math. Soc.; 1989.
[D]Devaney R.. An Introduction to Chaotic Dynnamical Systems. Addison Wesley, 2nd ed., 1989.
[DH]Douady A. & Hubbard J. H.. On the dynamics of polynomial- like mappings. Ann. Sci. École Norm. Sup. 18 (1985), 287343.
[DH1]Douady A. & Hubbard J. H.. Itération des polynômes quadratiques complexes. CR. Acad. Sci. Paris Série I 294, (1982), 123126.
[DH2]Douady A. & Hubbard J. H.. Etude Dynamique des Polynômes Complexes. Publ. Math. d'Orsay, Part I, No. 84–02, (1984), and Part II, No. 85–04, (1985).
[Dou]Douady A.. Algorithms for computing angles in the Mandelbrot set. Chaotic Dynamics and Fractals. Barnsley M. and Demko S. G., eds, Academic Press: New York, 1986, 155168.
[G-M]Goldberg L. & Milnor J.. Fixed point portraints of polynomial maps. Preprint.
[H]Hall G.. A C∞ Denjoy counterexample. Ergod. Th. & Dynam. Sys. 1 (1981), 261272.
[He]Herman M.. Sur la conjugaison diffélrentiable des difieomorphismes du cercle à des rotations. Publ. Math., IHES 49 (1979), 5234.
[K]Linda Keen. Julia sets. In: Chaos and Fractals, Proc Symp. in Applied Mathematics, 39, Devaney R and Keen L., eds, Amer. Math. Soc.: 1989.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 55 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.