Skip to main content
    • Aa
    • Aa

$C^*$-algebras of directed graphs and group actions

  • ALEX KUMJIAN (a1) and DAVID PASK (a2)
    • Published online: 01 December 1999

Given a free action of a group $G$ on a directed graph $E$ we show that the crossed product of $C^* (E)$, the universal $C^*$-algebra of $E$, by the induced action is strongly Morita equivalent to $C^* (E/G)$. Since every connected graph $E$ may be expressed as the quotient of a tree $T$ by an action of a free group $G$ we may use our results to show that $C^* (E)$ is strongly Morita equivalent to the crossed product $C_0 ( \partial T ) \times G$, where $\partial T$ is a certain zero-dimensional space canonically associated to the tree.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 64 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.