Skip to main content Accessibility help

Central limit theorems for sequential and random intermittent dynamical systems

  • MATTHEW NICOL (a1), ANDREW TÖRÖK (a1) (a2) and SANDRO VAIENTI (a3) (a4)

We establish self-norming central limit theorems for non-stationary time series arising as observations on sequential maps possessing an indifferent fixed point. These transformations are obtained by perturbing the slope in the Pomeau–Manneville map. We also obtain quenched central limit theorems for random compositions of these maps.

Hide All
[1] Aimino, R.. Vitesse de mélange et théorèmes limites pour les systèmes dynamiques aléatoires et non-autonomes. PhD Thesis, Université de Toulon, 2014.
[2] Aimino, R., Hu, H., Nicol, M., Török, A. and Vaienti, S.. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete Contin. Dyn. Syst. A 35(3) (2015), 793806.
[3] Aimino, R., Nicol, M. and Vaienti, S.. Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Related Fields 162(1) (2015), 233274.
[4] Ayyer, A., Liverani, C. and Stenlund, M.. Quenched CLT for random toral automorphism. Discrete Contin. Dyn. Syst. 24(2) (2009), 331348.
[5] Bahsoun, W. and Bose, C.. Mixing rates and limit theorems for random intermittent maps. Nonlinearity 29 (2016), 14171433.
[6] Brown, B. M.. Martingale central limit theorems. Ann. Math. Statist. 42 (1971), 5966.
[7] Conze, J.-P. and Raugi, A.. Limit theorems for sequential expanding dynamical systems on [0,1]. Ergodic Theory and Related Fields (Contemporary Mathematics, 430) . Ed. Assani, I.. American Mathematical Society, Providence, RI, 2007, pp. 89121.
[8] Cuny, C. and Merlevède, F.. Strong invariance principles with rate for ‘reverse’ martingales and applications. J. Theoret. Probab. 28 (2015), 137183.
[9] Dobbs, N. and Stenlund, M.. Quasistatic dynamical systems. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2016.9 , published online 12 May 2016.
[10] Eagleson, G. K.. Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen. 21 (1976), 653660. English translation: Theor. Prob. Appl. 21 (1976) 637–642, 1977.
[11] Hall, P. and Heyde, C. C.. Martingale Limit Theory and its Application (Probability and Mathematical Statistics) . Academic Press, New York, 1980.
[12] Haydn, N., Nicol, M., Persson, T. and Vaienti, S.. A note on Borel–Cantelli lemmas for non-uniformly hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys. 33(2) (2013), 475498.
[13] Haydn, N., Nicol, M., Török, A. and Vaienti, S.. Almost sure invariance principle for sequential and non-stationary dynamical systems. Trans. Amer. Math. Soc. to appear, Preprint, 2014, arXiv:1406.4266.
[14] Haydn, N., Nicol, M., Vaienti, S. and Zhang, L.. Central limit theorems for the shrinking target problem. J. Stat. Phys. 153 (2013), 864887.
[15] Leppänen, J. and Stenlund, M.. Quasistatic dynamics with intermittency. Math. Phys., Anal. Geom. 19 (2016), 123.
[16] Liverani, C., Saussol, B. and Vaienti, S.. A probabilistic approach to intermittency. Ergod. Th. & Dynam. Sys. 19(3) (1999), 671685.
[17] Peligrad, M.. Central limit theorem for triangular arrays of non-homogeneous Markov chains. Probab. Theory Related Fields 154 (2012), 409428.
[18] Schmidt, W.. A metrical theory in diophantine approximation. Canad. J. Math. 12 (1960), 619631.
[19] Schmidt, W.. Metrical theorems on fractional parts of sequences. Trans. Amer. Math. Soc. 110 (1964), 493518.
[20] Sprindzuk, V. G.. Metric Theory of Diophantine Approximations (Scripta Series in Mathematics) . V. H. Winston and Sons, Washington, DC, 1979, translated from the Russian and edited by Richard A. Silverman, with a foreword by Donald J. Newman.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed