Skip to main content
×
×
Home

Characterizing asymptotic randomization in abelian cellular automata

  • B. HELLOUIN DE MENIBUS (a1) (a2), V. SALO (a2) and G. THEYSSIER (a3)
Abstract

Abelian cellular automata (CAs) are CAs which are group endomorphisms of the full group shift when endowing the alphabet with an abelian group structure. A CA randomizes an initial probability measure if its iterated images have weak*-convergence towards the uniform Bernoulli measure (the Haar measure in this setting). We are interested in structural phenomena, i.e., randomization for a wide class of initial measures (under some mixing hypotheses). First, we prove that an abelian CA randomizes in Cesàro mean if and only if it has no soliton, i.e., a non-zero finite configuration whose time evolution remains bounded in space. This characterization generalizes previously known sufficient conditions for abelian CAs with scalar or commuting coefficients. Second, we exhibit examples of strong randomizers, i.e., abelian CAs randomizing in simple convergence; this is the first proof of this behaviour to our knowledge. We show, however, that no CA with commuting coefficients can be strongly randomizing. Finally, we show that some abelian CAs achieve partial randomization without being randomizing: the distribution of short finite words tends to the uniform distribution up to some threshold, but this convergence fails for larger words. Again this phenomenon cannot happen for abelian CAs with commuting coefficients.

Copyright
References
Hide All
[1] Boyer, L., Delacourt, M., Poupet, V., Sablik, M. and Theyssier, G.. 𝜇-limit sets of cellular automata from a computational complexity perspective. J. Comput. Syst. Sci. 81(8) (2015), 16231647.
[2] Cattaneo, G., Finelli, M. and Margara, L.. Investigating topological chaos by elementary cellular automata dynamics. Theoret. Comput. Sci. 244(1) (2000), 219241.
[3] Ceccherini-Silberstein, T. and Coornaert, M.. Cellular Automata and Groups. Springer, Berlin, 2010.
[4] Deitmar, A.. A First Course in Harmonic Analysis (Universitext) . Springer, New York, 2002.
[5] Delacourt, M. and Hellouin de Menibus, B.. Construction of 𝜇-limit sets of two-dimensional cellular automata. Proc. 32nd Int. Symp. on Theoretical Aspects of Computer Science, STACS 2015, March 4–7, 2015, Garching, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2015, pp. 262274.
[6] Delacourt, M., Poupet, V., Sablik, M. and Theyssier, G.. Directional dynamics along arbitrary curves in cellular automata. Theoret. Comput. Sci. 412(30) (2011), 38003821.
[7] Ferrari, P. A., Maass, A., Martinez, S. and Ney, P.. Cesàro mean distribution of group automata starting from measures with summable decay. Ergod. Th. & Dynam. Sys. 20(6) (1999), 16571670.
[8] Gajardo, A., Kari, J. and Moreira, A.. On time-symmetry in cellular automata. J. Comput. Syst. Sci. 78(4) (2012), 11151126.
[9] Gajardo, A., Nesme, V. and Theyssier, G.. Pre-expansivity in cellular automata. Preprint, 2016, arXiv:1603.07215.
[10] Hedlund, G. A.. Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3 (1969), 320375.
[11] Hellouin de Menibus, B.. Asymptotic behaviour of cellular automata: computation and randomness. PhD Thesis, Aix-Marseille University, 2010.
[12] Hellouin de Menibus, B. and Sablik, M.. Characterization of sets of limit measures of a cellular automaton iterated on a random configuration. Ergod. Th. & Dynam. Sys. (2016), 150, 001.
[13] Host, B., Maass, A. and Martínez, S.. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete Contin. Dyn. Syst. 9(6) (2003), 14231446.
[14] Kari, J. and Taati, S.. Statistical mechanics of surjective cellular automata. J. Stat. Phys. 160(5) (2015), 11981243.
[15] Lévy, P.. Sur la détermination des lois de probabilité par leurs fonctions caractéristiques. C. R. Acad. Sci. Paris 175 (1922), 854856.
[16] Lind, D. A.. Applications of ergodic theory and sofic systems to cellular automata. Physica D 10(1–2) (1984), 3644.
[17] Maass, A. and Martínez, S.. Time Averages for Some Classes of Expansive One-dimensional Cellular Automata. Springer, Dordrecht, 1999, pp. 3754.
[18] Maass, A., Martínez, S., Pivato, M. and Yassawi, R.. Asymptotic randomization of subgroup shifts by linear cellular automata. Ergod. Th. & Dynam. Sys. 26(8) (2006), 12031224.
[19] Miyamoto, M.. An equilibrium state for a one-dimensional life game. J. Math. Kyoto Univ. 19(3) (1979), 525540.
[20] Parthasarathy, K. R., Ranga Rao, R. and Varadhan, S. R. S.. Probability distributions on locally compact abelian groups. Illinois J. Math. 7(2) (1963), 337369.
[21] Pivato, M.. Ergodic theory of cellular automata. Encyclopedia of Complexity and Systems Science. Ed. Meyers, R. A.. Springer, New York, NY, 2009, pp. 29803015.
[22] Pivato, M. and Yassawi, R.. Limit measures for affine cellular automata. Ergod. Th. & Dynam. Sys. 22 (2002), 12691287.
[23] Pivato, M. and Yassawi, R.. Limit measures for affine cellular automata II. Ergod. Th. & Dynam. Sys. 30 (2003), 120.
[24] Pivato, M. and Yassawi, R.. Asymptotic randomization of sofic shifts by linear cellular automata. Ergod. Th. & Dynam. Sys. 26(4) (2006), 11771201.
[25] Sablik, M.. Directional dynamics for cellular automata: a sensitivity to initial condition approach. Theoret. Comput. Sci. 400(1–3) (2008), 118.
[26] Salo, V.. Subshifts with sparse projective subdynamics. Preprint, 2016, arXiv:1605.09623.
[27] Salo, V. and Törmä, I.. Commutators of bipermutive and affine cellular automata. Proc. Int. Workshop on Cellular Automata and Discrete Complex Systems (Gießen, Germany, 17–19 September 2013). Springer, Berlin, 2013, pp. 155170.
[28] Sobottka, M.. Right-permutive cellular automata on topological Markov chains. Discrete Contin. Dyn. Syst. A 20(4) (2008), 10951109.
[29] Taati, S.. Statistical equilibrium in deterministic cellular automata. Probabilistic Cellular Automata: Theory, Applications and Future Perspectives. Eds. Louis, P.-Y. and Nardi, F. R.. Springer International Publishing, Berlin, 2018, pp. 145164.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed