Skip to main content Accessibility help
×
Home

Classification and rigidity of totally periodic pseudo-Anosov flows in graph manifolds

  • THIERRY BARBOT (a1) and SÉRGIO R. FENLEY (a2) (a3)

Abstract

In this article we analyze totally periodic pseudo-Anosov flows in graph 3-manifolds. This means that in each Seifert fibered piece of the torus decomposition, the free homotopy class of regular fibers has a finite power which is also a finite power of the free homotopy class of a closed orbit of the flow. We show that each such flow is topologically equivalent to one of the model pseudo-Anosov flows which we previously constructed in Barbot and Fenley (Pseudo-Anosov flows in toroidal manifolds. Geom. Topol. 17 (2013), 1877–1954). A model pseudo-Anosov flow is obtained by glueing standard neighborhoods of Birkhoff annuli and perhaps doing Dehn surgery on certain orbits. We also show that two model flows on the same graph manifold are isotopically equivalent (i.e. there is a isotopy of $M$ mapping the oriented orbits of the first flow to the oriented orbits of the second flow) if and only if they have the same topological and dynamical data in the collection of standard neighborhoods of the Birkhoff annuli.

Copyright

References

Hide All
[An]Anosov, D. V.. Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature (Proceedings of the Steklov Institute of Mathematics, 90). American Mathematical Society, Providence, RI, 1969.
[Ba1]Barbot, T.. Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles. Ergod. Th. & Dynam. Sys. 15 (1995), 247270.
[Ba2]Barbot, T.. Flots d’Anosov sur les variétés graphées au sens de Waldhausen. Ann. Inst. Fourier (Grenoble) 46 (1996), 14511517.
[Ba3]Barbot, T.. Mise en position optimale d’un tore par rapport à un flot d’Anosov. Comment. Math. Helv. 70 (1995), 113160.
[Ba-Fe]Barbot, T. and Fenley, S.. Pseudo-Anosov flows in toroidal manifolds. Geom. Topol. 17 (2013), 18771954.
[Bo-La]Bonatti, C. and Langevin, R.. Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension. Ergod. Th. & Dynam. Sys. 14 (1994), 633643.
[BNR]Brittenham, M., Naimi, R. and Roberts, R.. Graph manifolds and taut foliations. J. Differential Geom. 45 (1997), 446470.
[Cal1]Calegari, D.. The geometry of R -covered foliations. Geom. Topol. 4 (2000), 457515.
[Cal2]Calegari, D.. Foliations with one sided branching. Geom. Dedicata 96 (2003), 153.
[Cal3]Calegari, D.. Promoting essential laminations. Invent. Math. 166 (2006), 583643.
[Fe1]Fenley, S.. Anosov flows in 3-manifolds. Ann. of Math. 139 (1994), 79115.
[Fe2]Fenley, S.. The structure of branching in Anosov flows of 3-manifolds. Comm. Math. Helv. 73 (1998), 259297.
[Fe3]Fenley, S.. Foliations with good geometry. J. Amer. Math. Soc. 12 (1999), 619676.
[Fe4]Fenley, S.. Foliations and the topology of 3-manifolds I: R -covered foliations and transverse pseudo-Anosov flows. Comm. Math. Helv. 77 (2002), 415490.
[Fe-Mo]Fenley, S. and Mosher, L.. Quasigeodesic flows in hyperbolic 3-manifolds. Topology 40 (2001), 503537.
[Fr-Wi]Franks, J. and Williams, R.. Anomalous Anosov flows. Global Theory of Dynamic Systems (Lecture Notes in Mathematics, 819). Springer, Berlin, 1980.
[Fr]Fried, D.. Transitive Anosov flows and pseudo-Anosov maps. Topology 22 (1983), 299303.
[Gh]Ghys, E.. Flots d’Anosov sur les 3-variétés fibrées en cercles. Ergod. Th. & Dynam. Sys. 4 (1984), 6780.
[Go]Goodman, S.. Dehn Surgery on Anosov Flows (Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983, pp. 300307.
[Hae]Haefliger, A.. Groupöides d’holonomie et classifiants. Asterisque 116 (1984), 7097.
[Ha-Th]Handel, M. and Thurston, W.. Anosov flows on new three manifolds. Invent. Math. 59 (1980), 95103.
[He]Hempel, J.. 3-manifolds (Annals of Mathematical Studies, 86). Princeton University Press, Princeton, NJ, 1976.
[Ja]Jaco, W.. Lectures on Three-manifold Topology (CBMS Regional Conference Series in Mathematics, 43). American Mathematical Society, Providence, RI, 1980.
[Ja-Sh]Jaco, W. and Shalen, P.. Seifert Fibered Spaces in 3-manifolds (Memoirs of the American Mathematical Society, 220). American Mathematical Society, Providence, RI, 1979.
[Jo]Johannson, K.. Homotopy Equivalences of 3-manifolds With Boundaries (Lecture Notes in Mathematics, 761). Springer, Berlin, 1979.
[Ma-Tsu]Matsumoto, S. and Tsuboi, T.. Transverse intersection of foliations in three-manifolds. Mon. Enseign. Math. 38 (2001), 503525.
[Mo1]Mosher, L.. Dynamical systems and the homology norm of a 3-manifold. I. Efficient intersection of surfaces and flows. Duke Math. J. 65 (1992), 449500.
[Mo2]Mosher, L.. Dynamical systems and the homology norm of a 3-manifold II. Invent. Math. 107 (1992), 243281.
[Mo3]Mosher, L.. Laminations and flows transverse to finite depth foliations, manuscript available in the web from http://newark.rutgers.edu:80/mosher/, Part I, Branched surfaces and dynamics; Part II, in preparation.
[Sei]Seifert, H.. Topologie dreidimensionaler gefäserter raume. Acta Math. 60 147238.
[Th1]Thurston, W.. The Geometry and Topology of 3-manifolds (Princeton University Lecture Notes). Princeton University Press, Princeton, NJ, 1982.
[Th2]Thurston, W.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. 19 (1988), 417431.
[Th3]Thurston, W..  Hyperbolic structures on 3-manifolds II, Surface groups and 3-manifolds that fiber over the circle. Preprint.
[Wa]Waller, R.. Surfaces which are flow graphs. Preprint, 2014.
[Wald1]Waldhausen, F.. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten, I. Invent. Math. 3 (1967), 308333.
[Wald2]Waldhausen, F.. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten, II. Invent. Math. 4 (1967), 87117.
[Wald3]Waldhausen, F.. On irreducible 3-manifolds which are sufficiently large. Ann. of Math. 87 (1968), 5688.

Classification and rigidity of totally periodic pseudo-Anosov flows in graph manifolds

  • THIERRY BARBOT (a1) and SÉRGIO R. FENLEY (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed