Skip to main content

Combinatorial and probabilistic properties of systems of numeration

  • GUY BARAT (a1) and PETER GRABNER (a2)

Let $G=(G_{n})_{n}$ be a strictly increasing sequence of positive integers with $G_{0}=1$ . We study the system of numeration defined by this sequence by looking at the corresponding compactification ${\mathcal{K}}_{G}$ of $\mathbb{N}$ and the extension of the addition-by-one map ${\it\tau}$ on ${\mathcal{K}}_{G}$ (the ‘odometer’). We give sufficient conditions for the existence and uniqueness of ${\it\tau}$ -invariant measures on ${\mathcal{K}}_{G}$ in terms of combinatorial properties of $G$ .

Hide All
[1]Barat, G., Berthé, V., Liardet, P. and Thuswaldner, J.. Dynamical directions in numeration. Ann. Inst. Fourier (Grenoble) 56(7) (2006), 19872092.
[2]Barat, G., Downarowicz, T., Iwanik, A. and Liardet, P.. Propriétés topologiques et combinatoires des échelles de numération. Colloq. Math. 84/85(part 2) (2000), 285306, Dedicated to the memory of Anzelm Iwanik.
[3]Barat, G., Downarowicz, T. and Liardet, P.. Dynamiques associées à une échelle de numération. Acta Arith. 103(1) (2002), 4178.
[4]Barat, G. and Liardet, P.. Dynamical systems originated in the Ostrowski alpha-expansion. Ann. Univ. Sci. Budapest. Sect. Comput. 24 (2004), 133184.
[5]Berthé, V. and Rigo, M.. Odometers on regular languages. Theory Comput. Syst. 40(1) (2007), 131.
[6]Bruin, H., Keller, G. and St. Pierre, M.. Adding machines and wild attractors. Ergod. Th. & Dynam. Sys. 17(6) (1997), 12671287.
[7]Carlitz, L., Scoville, R. and Hoggatt, V. E. Jr. Fibonacci representations of higher order I. Fibonacci Quart. 10(1) (1972), 4369.
[8]Carlitz, L., Scoville, R. and Hoggatt, V. E. Jr. Fibonacci representations of higher order II. Fibonacci Quart. 10(1) (1972), 7180.
[9]Dooley, A. H.. Markov odometers. Topics in Dynamics and Ergodic Theory (London Mathematical Society Lecture Note Series, 310). Cambridge University Press, Cambridge, 2003, pp. 6080.
[10]Doudékova-Puydebois, M.. On dynamics related to a class of numeration systems. Monatsh. Math. 135(1) (2002), 1124.
[11]Dumont, J.-M.. Formules sommatoires et systèmes de numération lies aux substitutions. Séminaires de Théor. des Nombres, Bordeaux 16 (1987/88), Exp. Nr. 39, 12 pp.
[12]Dumont, J.-M. and Thomas, A.. Systèmes de numération et fonctions fractales relatifs aux substitutions. Theoret. Comput. Sci. 65 (1989), 153169.
[13]Fraenkel, A. S.. Systems of numeration. Amer. Math. Monthly 92 (1985), 105114.
[14]Frougny, C.. Fibonacci representations and finite automata. IEEE Trans. Inform. Theory 37 (1991), 393399.
[15]Frougny, C.. On the successor function in non-classical numeration systems. Proc. S.T.A.C.S. 96 (Lecture Notes in Computer Science, 1046). Springer, Berlin, 1996, pp. 543553.
[16]Frougny, C.. On the sequentiality of the successor function. Inform. and Comput. 139 (1997), 1738.
[17]Frougny, C.. Number representation and finite automata. Topics in Symbolic Dynamics and Applications (Temuco, 1997) (London Mathematical Society Lecture Notes Series, 279). Cambridge University Press, Cambridge, 2000, pp. 207228.
[18]Frougny, C.. Numeration systems. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and its Applications, 90). Ed. Lothaire, M.. Cambridge University Press, Cambridge, 2002, pp. 230268.
[19]Frougny, C.. Non-standard number representation: computer arithmetic, beta-numeration and quasicrystals. Physics and Theoretical Computer Science (NATO Security through Science Series D: Information and Communication Security, 7). IOS, Amsterdam, 2007, pp. 155169.
[20]Frougny, C. and Solomyak, C.. On representation of integers in linear numerations systems. Ergodic Theory of ℤd-Actions (London Mathematical Society Lecture Note Series, 228). Eds. Pollicott, M. and Schmidt, K.. Cambridge University Press, Cambridge, 1996, pp. 345368.
[21]Grabner, P. J., Liardet, P. and Tichy, R. F.. Odometers and systems of numeration. Acta Arith. 70 (1995), 103123.
[22]Grabner, P. J. and Tichy, R. F.. 𝛼-expansions, linear recurrences and the sum-of-digits function. Manuscripta Math. 70 (1991), 311324.
[23]Hewitt, E. and Ross, K. A.. Abstract Harmonic Analysis. Springer, Berlin, 1970.
[24]Kátai, I.. Open problems originated in our research work with Zoltán Daróczy. Publ. Math. Debrecen 75 (2009), 149165.
[25]Köthe, G.. Topological Vector Spaces. I (Die Grundlehren der Mathematischen Wissenschaften, Band 159). Springer, New York, 1969 (translated from the German by D. J. H. Garling).
[26]Lecomte, P. B. A. and Rigo, M.. Numeration systems on a regular language. Theory Comput. Syst. 34(1) (2001), 2744.
[27]Lothaire, M.. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and its Applications, 90). Cambridge University Press, Cambridge, 2002.
[28]Montgomery, H. L. and Vorhauer, U. M. A.. Greedy sums of distinct squares. Math. Comp. 73(245) (2004), 493513 (electronic).
[29]Parry, W.. On the 𝛽-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11 (1960), 401416.
[30]Rauzy, G.. Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2) (1982), 147178.
[31]Rigo, M.. Automates et systèmes de numération. Bull. Soc. Roy. Sci. Liège 73(5–6) (2005), 257270.
[32]Schweiger, F.. Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1995.
[33]Sidorov, N.. Arithmetic dynamics. Topics in Dynamics and Ergodic Theory (London Mathematical Society Lecture Note Series, 310). Eds. Bezuglyi, S. and Kolyada, S.. Cambridge University Press, Cambridge, 2003, pp. 145189.
[34]Vershik, A. M.. The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 223 (1995), 120126.
[35]Yaglom, A. M. and Yaglom, I. M.. Challenging Mathematical Problems with Elementary Solutions. Vol. II (Problems from Various Branches of Mathematics). Dover Publications Inc, New York, 1987 (translated from the Russian by James McCawley, Jr., Reprint of the 1967 edition).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed