Skip to main content
×
×
Home

Connectedness of the tricorn

  • Shizuo Nakane (a1)
Abstract

In this note, we show the connectedness of the tricorn, the connectedness locus for the family of antiquadratic maps: fc(z) = + c, cC.

Copyright
References
Hide All
[1]Ahlfors, L.. Lectures on Quasiconformal Mappings. Van Nostrand: New York, 1966.
[2]Crowe, W., Hasson, R., Rippon, P. & Strain-Clark, P. E. D.. On the structure of the Mandelbar set. Nonlinearity 2 (1989), 541553.
[3]Douady, A.. Systèmes dynamiques holomorphes. uAstérisque 105–106 (1983), 3963.
[4]Douady, A. & Hubbard, J.. Étude dynamique des polynômes complexes, parts I and II. Publ. Math. d'Orsay (19841985).
[5]Douady, A. & Hubbard, J.. Iteration des polynômes quadratiques complexes. C. R. Acad. Sci. Paris, Série I 294 (1982), 123126.
[6]Lavaurs, P.. Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques. Thesis. Orsay, (1989).
[7]Milnor, J.. Remarks on iterated cubic maps. Exp. Math. 1 (1992), 524.
[8]Milnor, J.. Hyperbolic components in spaces of polynomial maps (with an appendix by A. Poirier). Preprint.
[9]Winters, R.. Bifurcations in families of antiholomorphic and biquadratic maps. Thesis at Boston University.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed