Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 20
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Iglesias, J. Portela, A. Rovella, A. and Xavier, J. 2016. Dynamics of covering maps of the annulus I: semiconjugacies. Mathematische Zeitschrift,


    KUNDE, PHILIPP 2016. Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric. Ergodic Theory and Dynamical Systems, p. 1.


    BANERJEE, SHILPAK 2015. Non-standard real-analytic realizations of some rotations of the circle. Ergodic Theory and Dynamical Systems, p. 1.


    Bramham, Barney 2015. Pseudo-rotations with sufficiently Liouvillean rotation number are $$C^0$$ C 0 -rigid. Inventiones mathematicae, Vol. 199, Issue. 2, p. 561.


    Bramham, Barney 2015. Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves. Annals of Mathematics, p. 1033.


    Ginzburg, Viktor L. and Gürel, Başak Z. 2015. The Conley Conjecture and Beyond. Arnold Mathematical Journal, Vol. 1, Issue. 3, p. 299.


    Kunde, Philipp 2015. Uniform rigidity sequences for weak mixing diffeomorphisms on <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">D</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>, <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi mathvariant="double-struck">A</mml:mi></mml:math> and <mml:math altimg="si3.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">T</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>. Journal of Mathematical Analysis and Applications, Vol. 429, Issue. 1, p. 111.


    Strung, Karen R. 2015. <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup></mml:math>-algebras of minimal dynamical systems of the product of a Cantor set and an odd dimensional sphere. Journal of Functional Analysis, Vol. 268, Issue. 3, p. 671.


    Passeggi, Alejandro and Xavier, Juliana 2014. A classification of minimal sets for surface homeomorphisms. Mathematische Zeitschrift, Vol. 278, Issue. 3-4, p. 1153.


    ZHANG, PENGFEI 2014. Fundamental domain of invariant sets and applications. Ergodic Theory and Dynamical Systems, Vol. 34, Issue. 01, p. 341.


    Chen, Jianyu Hu, Huyi and Pesin, Yakov 2013. The essential coexistence phenomenon in dynamics. Dynamical Systems, Vol. 28, Issue. 3, p. 453.


    ZHANG, YIWEI and LIN, CONGPING 2013. Invariant measures with bounded variation densities for piecewise area preserving maps. Ergodic Theory and Dynamical Systems, Vol. 33, Issue. 02, p. 624.


    Béguin, F. Crovisier, S. and Le Roux, F. 2012. Realisation of measured dynamics as uniquely ergodic minimal homeomorphisms on manifolds. Mathematische Zeitschrift, Vol. 270, Issue. 1-2, p. 59.


    Collier, Brian Kerman, Ely Reiniger, Benjamin M. Turmunkh, Bolor and Zimmer, Andrew 2012. A symplectic proof of a theorem of Franks. Compositio Mathematica, Vol. 148, Issue. 06, p. 1969.


    Kwapisz, Jaroslaw and Mathison, Mark 2012. Diophantine and minimal but not uniquely ergodic (almost). Nonlinearity, Vol. 25, Issue. 7, p. 2027.


    Chéritat, Arnaud 2011. Relatively compact Siegel disks with non-locally connected boundaries. Mathematische Annalen, Vol. 349, Issue. 3, p. 529.


    Ginzburg, V. L. and Kerman, E. 2009. Homological Resonances for Hamiltonian Diffeomorphisms and Reeb Flows. International Mathematics Research Notices,


    Jäger, T. 2009. The concept of bounded mean motion for toral homeomorphisms. Dynamical Systems, Vol. 24, Issue. 3, p. 277.


    FAYAD, B. R. SAPRYKINA, M. and WINDSOR, A. 2007. Non-standard smooth realizations of Liouville rotations. Ergodic Theory and Dynamical Systems, Vol. 27, Issue. 06,


    Katok, Anatole and Thouvenot, Jean-Paul 2006.


    ×
  • Ergodic Theory and Dynamical Systems, Volume 24, Issue 5
  • October 2004, pp. 1477-1520

Constructions in elliptic dynamics

  • BASSAM FAYAD (a1) and ANATOLE KATOK (a2)
  • DOI: http://dx.doi.org/10.1017/S0143385703000798
  • Published online: 18 October 2004
Abstract

We present an overview and some new applications of the approximation by conjugation method introduced by Anosov and Katok more than 30 years ago (Trans. Moscow Math. Soc.23 (1970), 1–35). Michel Herman made important contributions to the development and applications of this method beginning from the construction of minimal and uniquely ergodic diffeomorphisms jointly with Fathi (Asterisque49 (1977), 37–59) and continuing with exotic invariant sets of rational maps of the Riemann sphere (J. London Math. Soc. (2) 34 (1986), 375–384) and the construction of invariant tori with non-standard and unexpected behavior in the context of KAM theory (Pitman Research Notes Mathematical Series 243 (1992); Proc. Int. Congr. Mathematicians (Berlin, 1998) Vol. 11, 797–808). Recently the method has been experiencing a revival. Some of the new results presented in the paper illustrate variety of uses for tools available for a long time, others exploit new methods, in particular the possibility of mixing in the context of Liouvillean dynamics discovered by the first author (Ergod. Th. & Dynam. Sys.22 (2002) 437–468; Proc. Amer. Math. Soc.130 (2002), 103–109).

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax