[1]
Anantharaman-Delaroche, C.. Purely infinite C^{∗} -algebras arising from dynamical systems. Bull. Soc. Math. France
125 (1997), 199–225.

[2]
Anantharaman-Delaroche, C.. C^{∗} -algèbres de Cuntz-Krieger et groupes Fuchsiens
*(Operator Theory, Operator Algebras and Related Topics (Timisoara 1996))*
. The Theta Foundation, Bucharest, 1997, pp. 17–35.

[3]
Ara, P., Moreno, M. A. and Pardo, E.. Non-stable K-theory for graph algebras. Algebr. Represent. Theory
10(2) (2007), 157–178.

[4]
Blackadar, B. and Rørdam, M.. Extending states on preordered semigroups and the existence of quasitraces on C^{∗} -algebras. J. Algebra
152 (1992), 240–247.

[5]
Bönicke, C. and Li, K.. Ideal structure and pure infiniteness of ample groupoid C^{∗} -algebras. Ergod. Th. & Dynam. Sys. (2018), doi:10.1017/etds.2018.39. Published online: 14 June 2018. [6]
Brown, J., Clark, L. O., Farthing, C. and Sims, A.. Simplicity of algebras associated to étale groupoids. Semigroup Forum
88 (2014), 433–452.

[7]
Brown, J., Clark, L. and Sierakowski, A.. Purely infinite C^{∗} -algebras associated to étale groupoids. Ergod. Th. & Dynam. Sys.
35 (2015), 2397–2411.

[8]
Brown, L. G., Green, P. and Rieffel, M. A.. Stable isomorphism and strong Morita equivalence of C^{∗} -algebras. Pacific J. Math.
71 (1977), 349–363.

[9]
Brown, N.. AF embeddability of crossed products of AF algebras by the integers. J. Funct. Anal.
160 (1998), 150–175.

[10]
Carlsen, T. M., Ruiz, E. and Sims, A.. Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C^{∗} -algebras and Leavitt path algebras. Proc. Amer. Math. Soc.
145 (2017), 1581–1592.

[11]
Clark, L. O., an Huef, A. and Sims, A.. AF-embeddability of 2-graph algebras and quasidiagonality of *k*-graph algebras. J. Funct. Anal.
271 (2016), 958–991.

[12]
Connes, A.. Noncommutative Geometry. Academic Press, San Diego, CA, 1994.

[13]
Cuntz, J.. K-theory for certain C^{∗} -algebras. Ann. of Math. (2)
113(1) (1981), 181–197.

[14]
Elliott, G., Gong, G., Lin, H. and Niu, Z.. On the classification of simple amenable C*-algebras with finite decomposition rank II. *Preprint*, 2015. arXiv:1507.03437 [math.OA]. [15]
Exel, R.. Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Amer. Math. Soc.
138 (2010), 2991–3001.

[16]
Folland, G. B.. Modern techniques and their applications. Real Analysis
*(Pure and Applied Mathematics (New York))*
. Wiley-Interscience, New York, 1984.

[17]
Giordano, T., Putnam, I. F. and Skau, C. F.. Topological orbit equivalence and C^{∗} -crossed products. J. Reine Angew. Math.
469 (1995), 51–111.

[18]
Gong, G., Lin, H. and Niu, Z.. Classification of simple amenable 𝓩-stable *C*
^{∗}-algebras. *Preprint*, 2015. arXiv:1501.00135 [math.OA]. [19]
Haagerup, U.. Quasitraces on exact C^{∗} -algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can.
36 (2014), 67–92.

[20]
Jolissaint, P. and Robertson, G.. Simple purely infinite C^{∗} -algebras and *n*-filling actions. J. Funct. Anal.
175 (2000), 197–213.

[21]
Katsura, T.. A class of C^{∗} -algebras generalizing both graph algebras and homeomorphism C^{∗} -algebras I, fundamental results. Trans. Amer. Math. Soc.
356 (2004), 4287–4322 (electronic).

[22]
Kishimoto, A. and Kumjian, A.. Crossed products of Cuntz algebras by quasi-free automorphisms. Operator Algebras and Their Applications (Waterloo, ON, 1994/1995)
*(Fields Institute Communications, 13)*
. American Mathematical Society, Providence, RI, 1997, pp. 173–192.

[23]
Kerr, D. and Nowak, P. W.. Residually finite actions and crossed products. Ergod. Th. & Dynam. Sys.
32 (2012), 1585–1614.

[24]
Kirchberg, E.. The Classification of Purely Infinite C^{∗} -Algebras Using Kasparaov’s Theory
*(Fields Institute Communication Series)*
. American Mathematical Society, Providence, RI, to appear.

[25]
Kirchberg, E. and Rørdam, M.. Non-simple purely infinite C^{∗} -algebras. Amer. J. Math.
122(3) (2000), 637–666.

[26]
Kirchberg, E. and Rørdam, M.. Infinite non-simple C^{∗} -algebras: absorbing the Cuntz Algebra 𝓞_{
∞
}
. Adv. Math.
167 (2002), 195–264.

[27]
Kumjian, A. and Pask, D.. Higher rank graph C^{∗} -algebras. New York J. Math.
6 (2000), 1–20.

[28]
Laca, M. and Spielberg, J.. Purely infinite C^{∗} -algebras from boundary actions of discrete groups. J. Reine Angew. Math.
480 (1996), 125–139.

[29]
Li, H.. Purely infinite totally disconnected topological graph algebras. Illinois J. Math.
60(3–4) (2016), 739–750.

[30]
Li, X.. Continuous orbit equivalence rigidity. Ergod. Th. & Dynam. Sys.
38 (2018), 1543–1563.

[31]
Pask, D., Sierakowski, A. and Sims, A.. Unbounded quasitraces, stable finiteness and pure infiniteness. *Preprint*, 2017. arXiv:1705.01268 [math.OA]. [32]
Paterson, A.. Groupoids, Inverse Semigroups, and their Operator Algebras
*(Progress in Mathematics, 170)*
. Birkhauser, Boston, 1998.

[33]
Phillips, N. C.. A classification theorem for nuclear purely infinite simple C^{∗} -algebras. Doc. Math.
5 (2000), 49–114.

[34]
Pimsner, M.. Embedding some transformation group C^{∗} -algebras into AF-algebras. Ergod. Th. & Dynam. Sys.
3 (1983), 613–626.

[35]
Rainone, T.. MF actions and K-theoretic dynamics. J. Funct. Anal.
267 (2014), 542–578.

[36]
Rainone, T.. Paradoxical decompositions in C^{∗} -dynamical systems. J. Noncommut. Geom.
11 (2017), 791–822.

[37]
Rainone, T.. Noncommutative topological dynamics. Proc. Lond. Math. Soc. (3)
112(5) (2016), 903–923.

[38]
Rainone, T. and Schafhauser, C.. Crossed products of nuclear C^{∗}-algebras by free groups and their traces. *Preprint*, 2016. arXiv:1601.06090 [math.OA]. [39]
Renault, J.. A Groupoid Approach to C^{∗} -Algebras
*(Lecture Notes in Mathematics, 793)*
. Springer, Berlin, 1980.

[40]
Renault, J. N., Sims, A., Williams, D. P. and Yeend, T.. Uniqueness theorems for topological higher-rank graph C^{∗} -algebras. Proc. Amer. Math. Soc.
146 (2018), 669–684.

[41]
Rørdam, M.. A simple C^{∗} -algebra with a finite and infinite projection. Acta Math.
191(01) (2003), 109–142.

[42]
Rørdam, M.. Classification of nuclear, simple C^{∗} -algebras. Classifcation of Nuclear C^{∗} -algebras. Entropy in Operator Algebras
*(Encyclopaedia of Mathematical Sciences, 126)*
. Springer, Berlin, 2002, pp. 1–145.

[43]
Rørdam, M. and Sierakowski, A.. Purely infinite C^{∗} -algebras arising from crossed products. Ergod. Th. & Dynam. Sys.
32 (2012), 273–293.

[44]
Spielberg, J.. Graph-based models for Kirchberg algebras. J. Operator Theory
57 (2007), 347–374.

[45]
Spielberg, J. S.. Free-product groups, Cuntz-Krieger algebras and covariant maps. Int. J. Math.
02(04) (1991), 457–476.

[46]
Suzuki, Y.. Construction of minimal skew products of amenable minimal dynamical systems. Groups Geom. Dyn.
11 (2017), 75–94.

[47]
Tikuisis, A., White, S. and Winter, W.. Quasidiagonality of nuclear C^{∗} -algebras. Ann. of Math. (2)
185 (2017), 229–284.

[48]
Wagon, S.. The Banach-Tarski Paradox. Cambridge University Press, Cambridge, 1993.

[49]
Winter, W.. On the classification of 𝓩-stable C^{∗} -algebras with real rank zero and finite decomposition rank. J. Lond. Math. Soc. (2)
179 (2006), 167–183.

[50]
Yeend, T.. Topological higher-rank graphs and the C^{∗} -algebras of topological 1-graphs. Operator Theory, Operator Algebras, and Applications
*(Contemporary Mathematics, 414)*
. American Mathematical Society, Providence, RI, 2006, pp. 231–244.