Skip to main content Accessibility help
×
Home

A dichotomy for groupoid $\text{C}^{\ast }$ -algebras

  • TIMOTHY RAINONE (a1) and AIDAN SIMS (a2)

Abstract

We study the finite versus infinite nature of C $^{\ast }$ -algebras arising from étale groupoids. For an ample groupoid $G$ , we relate infiniteness of the reduced C $^{\ast }$ -algebra $\text{C}_{r}^{\ast }(G)$ to notions of paradoxicality of a K-theoretic flavor. We construct a pre-ordered abelian monoid $S(G)$ which generalizes the type semigroup introduced by Rørdam and Sierakowski for totally disconnected discrete transformation groups. This monoid characterizes the finite/infinite nature of the reduced groupoid C $^{\ast }$ -algebra of $G$ in the sense that if $G$ is ample, minimal, topologically principal, and $S(G)$ is almost unperforated, we obtain a dichotomy between the stably finite and the purely infinite for $\text{C}_{r}^{\ast }(G)$ . A type semigroup for totally disconnected topological graphs is also introduced, and we prove a similar dichotomy for these graph $\text{C}^{\ast }$ -algebras as well.

Copyright

References

Hide All
[1] Anantharaman-Delaroche, C.. Purely infinite C -algebras arising from dynamical systems. Bull. Soc. Math. France 125 (1997), 199225.
[2] Anantharaman-Delaroche, C.. C -algèbres de Cuntz-Krieger et groupes Fuchsiens (Operator Theory, Operator Algebras and Related Topics (Timisoara 1996)) . The Theta Foundation, Bucharest, 1997, pp. 1735.
[3] Ara, P., Moreno, M. A. and Pardo, E.. Non-stable K-theory for graph algebras. Algebr. Represent. Theory 10(2) (2007), 157178.
[4] Blackadar, B. and Rørdam, M.. Extending states on preordered semigroups and the existence of quasitraces on C -algebras. J. Algebra 152 (1992), 240247.
[5] Bönicke, C. and Li, K.. Ideal structure and pure infiniteness of ample groupoid C -algebras. Ergod. Th. & Dynam. Sys. (2018), doi:10.1017/etds.2018.39. Published online: 14 June 2018.
[6] Brown, J., Clark, L. O., Farthing, C. and Sims, A.. Simplicity of algebras associated to étale groupoids. Semigroup Forum 88 (2014), 433452.
[7] Brown, J., Clark, L. and Sierakowski, A.. Purely infinite C -algebras associated to étale groupoids. Ergod. Th. & Dynam. Sys. 35 (2015), 23972411.
[8] Brown, L. G., Green, P. and Rieffel, M. A.. Stable isomorphism and strong Morita equivalence of C -algebras. Pacific J. Math. 71 (1977), 349363.
[9] Brown, N.. AF embeddability of crossed products of AF algebras by the integers. J. Funct. Anal. 160 (1998), 150175.
[10] Carlsen, T. M., Ruiz, E. and Sims, A.. Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C -algebras and Leavitt path algebras. Proc. Amer. Math. Soc. 145 (2017), 15811592.
[11] Clark, L. O., an Huef, A. and Sims, A.. AF-embeddability of 2-graph algebras and quasidiagonality of k-graph algebras. J. Funct. Anal. 271 (2016), 958991.
[12] Connes, A.. Noncommutative Geometry. Academic Press, San Diego, CA, 1994.
[13] Cuntz, J.. K-theory for certain C -algebras. Ann. of Math. (2) 113(1) (1981), 181197.
[14] Elliott, G., Gong, G., Lin, H. and Niu, Z.. On the classification of simple amenable C*-algebras with finite decomposition rank II. Preprint, 2015. arXiv:1507.03437 [math.OA].
[15] Exel, R.. Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Amer. Math. Soc. 138 (2010), 29913001.
[16] Folland, G. B.. Modern techniques and their applications. Real Analysis (Pure and Applied Mathematics (New York)) . Wiley-Interscience, New York, 1984.
[17] Giordano, T., Putnam, I. F. and Skau, C. F.. Topological orbit equivalence and C -crossed products. J. Reine Angew. Math. 469 (1995), 51111.
[18] Gong, G., Lin, H. and Niu, Z.. Classification of simple amenable 𝓩-stable C -algebras. Preprint, 2015. arXiv:1501.00135 [math.OA].
[19] Haagerup, U.. Quasitraces on exact C -algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can. 36 (2014), 6792.
[20] Jolissaint, P. and Robertson, G.. Simple purely infinite C -algebras and n-filling actions. J. Funct. Anal. 175 (2000), 197213.
[21] Katsura, T.. A class of C -algebras generalizing both graph algebras and homeomorphism C -algebras I, fundamental results. Trans. Amer. Math. Soc. 356 (2004), 42874322 (electronic).
[22] Kishimoto, A. and Kumjian, A.. Crossed products of Cuntz algebras by quasi-free automorphisms. Operator Algebras and Their Applications (Waterloo, ON, 1994/1995) (Fields Institute Communications, 13) . American Mathematical Society, Providence, RI, 1997, pp. 173192.
[23] Kerr, D. and Nowak, P. W.. Residually finite actions and crossed products. Ergod. Th. & Dynam. Sys. 32 (2012), 15851614.
[24] Kirchberg, E.. The Classification of Purely Infinite C -Algebras Using Kasparaov’s Theory (Fields Institute Communication Series) . American Mathematical Society, Providence, RI, to appear.
[25] Kirchberg, E. and Rørdam, M.. Non-simple purely infinite C -algebras. Amer. J. Math. 122(3) (2000), 637666.
[26] Kirchberg, E. and Rørdam, M.. Infinite non-simple C -algebras: absorbing the Cuntz Algebra 𝓞 . Adv. Math. 167 (2002), 195264.
[27] Kumjian, A. and Pask, D.. Higher rank graph C -algebras. New York J. Math. 6 (2000), 120.
[28] Laca, M. and Spielberg, J.. Purely infinite C -algebras from boundary actions of discrete groups. J. Reine Angew. Math. 480 (1996), 125139.
[29] Li, H.. Purely infinite totally disconnected topological graph algebras. Illinois J. Math. 60(3–4) (2016), 739750.
[30] Li, X.. Continuous orbit equivalence rigidity. Ergod. Th. & Dynam. Sys. 38 (2018), 15431563.
[31] Pask, D., Sierakowski, A. and Sims, A.. Unbounded quasitraces, stable finiteness and pure infiniteness. Preprint, 2017. arXiv:1705.01268 [math.OA].
[32] Paterson, A.. Groupoids, Inverse Semigroups, and their Operator Algebras (Progress in Mathematics, 170) . Birkhauser, Boston, 1998.
[33] Phillips, N. C.. A classification theorem for nuclear purely infinite simple C -algebras. Doc. Math. 5 (2000), 49114.
[34] Pimsner, M.. Embedding some transformation group C -algebras into AF-algebras. Ergod. Th. & Dynam. Sys. 3 (1983), 613626.
[35] Rainone, T.. MF actions and K-theoretic dynamics. J. Funct. Anal. 267 (2014), 542578.
[36] Rainone, T.. Paradoxical decompositions in C -dynamical systems. J. Noncommut. Geom. 11 (2017), 791822.
[37] Rainone, T.. Noncommutative topological dynamics. Proc. Lond. Math. Soc. (3) 112(5) (2016), 903923.
[38] Rainone, T. and Schafhauser, C.. Crossed products of nuclear C-algebras by free groups and their traces. Preprint, 2016. arXiv:1601.06090 [math.OA].
[39] Renault, J.. A Groupoid Approach to C -Algebras (Lecture Notes in Mathematics, 793) . Springer, Berlin, 1980.
[40] Renault, J. N., Sims, A., Williams, D. P. and Yeend, T.. Uniqueness theorems for topological higher-rank graph C -algebras. Proc. Amer. Math. Soc. 146 (2018), 669684.
[41] Rørdam, M.. A simple C -algebra with a finite and infinite projection. Acta Math. 191(01) (2003), 109142.
[42] Rørdam, M.. Classification of nuclear, simple C -algebras. Classifcation of Nuclear C -algebras. Entropy in Operator Algebras (Encyclopaedia of Mathematical Sciences, 126) . Springer, Berlin, 2002, pp. 1145.
[43] Rørdam, M. and Sierakowski, A.. Purely infinite C -algebras arising from crossed products. Ergod. Th. & Dynam. Sys. 32 (2012), 273293.
[44] Spielberg, J.. Graph-based models for Kirchberg algebras. J. Operator Theory 57 (2007), 347374.
[45] Spielberg, J. S.. Free-product groups, Cuntz-Krieger algebras and covariant maps. Int. J. Math. 02(04) (1991), 457476.
[46] Suzuki, Y.. Construction of minimal skew products of amenable minimal dynamical systems. Groups Geom. Dyn. 11 (2017), 7594.
[47] Tikuisis, A., White, S. and Winter, W.. Quasidiagonality of nuclear C -algebras. Ann. of Math. (2) 185 (2017), 229284.
[48] Wagon, S.. The Banach-Tarski Paradox. Cambridge University Press, Cambridge, 1993.
[49] Winter, W.. On the classification of 𝓩-stable C -algebras with real rank zero and finite decomposition rank. J. Lond. Math. Soc. (2) 179 (2006), 167183.
[50] Yeend, T.. Topological higher-rank graphs and the C -algebras of topological 1-graphs. Operator Theory, Operator Algebras, and Applications (Contemporary Mathematics, 414) . American Mathematical Society, Providence, RI, 2006, pp. 231244.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed