Skip to main content

Diophantine approximation by orbits of expanding Markov maps


In 1995, Hill and Velani introduced the ‘shrinking targets’ theory. Given a dynamical system ([0,1],T), they investigated the Hausdorff dimension of sets of points whose orbits are close to some fixed point. In this paper, we study the sets of points well approximated by orbits {Tnx}n≥0, where Tis an expanding Markov map with a finite partition supported by [0,1]. The dimensions of these sets are described using the multifractal properties of invariant Gibbs measures.

Hide All
[1]Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific, River Edge, NJ, 2000.
[2]Barral, J., Ben Nasr, F. and Peyrière, J.. Comparing multifractal formalisms: the neighboring boxes conditions. Asian J. Math. 7 (2003), 149165.
[3]Barral, J. and Seuret, S.. Heterogeneous ubiquitous systems in ℝd and Hausdorff dimension. Bull. Braz. Math. Soc. (N.S.) 38(3) (2007), 467515.
[4]Barral, J. and Seuret, S.. Ubiquity and large intersections properties under digit frequencies constraints. Math. Proc. Cambridge Philos. Soc. 145(3) (2008), 527548.
[5]Barreira, L., Pesin, Y. and Schmeling, J.. On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7 (1997), 2738.
[6]Beresnevich, V. and Velani, S.. A Mass Transference Principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164(3) (2006), 971992.
[7]Besicovitch, A. S.. Sets of fractional dimension (IV): on rational approximation to real numbers. J. Lond. Math. Soc. 9 (1934), 126131.
[8]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin, 1975.
[9]Brown, G., Michon, G. and Peyrière, J.. On the multifractal analysis of measures. J. Stat. Phys. 66 (1992), 775790.
[10]Bugeaud, Y.. Approximation by algebraic integers and Hausdorff dimension. J. Lond. Math. Soc. (2) 65 (2002), 547559.
[11]Bugeaud, Y.. A note on inhomogeneous diophantine approximation. Glasg. Math. J. 45 (2003), 105110.
[12]Bugeaud, Y., Harrap, S., Kristensen, S. and Velani, S.. On shrinking targets for ℤm-actions on the torii. Mathematika 56 (2010), 193202.
[13]Cassels, J. W. S.. An introduction to diophantine approximation (Cambridge Tracts in Mathematics and Mathematical Physics, 45). Cambridge University Press, New York, 1957.
[14]Collet, P., Lebowitz, J. and Porzio, A.. The dimension spectrum of some dynamical systems. J. Stat. Phys. 47 (1987), 609644.
[15]Dodson, M. M., Melián, M. V., Pestana, D. and Velani, S. L.. Patterson measure and Ubiquity. Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 3760.
[16]Einsiedler, M., Katok, A. and Lindenstrauss, E.. Invariant measures and the set of exceptions to Littlewood’s conjecture. Ann. of Math. (2) 164(2) (2006), 513560.
[17]Falconer, K. J.. Fractal geometry. Mathematical Foundations and Applications, 2nd edn. John Wiley, Hoboken, NJ, 2003.
[18]Fan, A.-H., Schmeling, J. and Troubetzkoy, S.. Dynamical Diophantine approximation. Preprint, 2009.
[19]Galatolo, S.. Dimension and hitting time in rapidly mixing systems. Math. Res. Lett. 14(5) (2007), 797805.
[20]Hill, R. and Velani, S. L.. Ergodic theory of shrinking targets. Invent. Math. 119 (1995), 175198.
[21]Hill, R. and Velani, S. L.. The shrinking target problem for matrix transformations of tori. J. Lond. Math. Soc. (2) 60(2) (1999), 381398.
[22]Jarnik, V.. Diophantische Approximationen und Hausdorffsches Mass. Mat. Sb. 36 (1929), 371381.
[23]Kim, D. H.. The shrinking target property of irrational rotations. Nonlinearity 20(7) (2007), 16371643.
[24]Kleinbock, D. and Margulis, G. A.. Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math. (2) 148 (1998), 339360.
[25]Kleinbock, D., Lindenstrauss, E. and Weiss, B.. On fractal measures and Diophantine approximation. Selecta Math. (N.S.) 10 (2004), 479523.
[26]Liverani, C., Saussol, B. and Vaienti, S.. Conformal measure and decay of correlation for covering weighted systems. Ergod. Th. & Dynam. Sys. 18(6) (1998), 13991420.
[27]Ornstein, D. and Weiss, B.. Entropy and data compression schemes. IEEE Trans. Inform. Theory 39(1) (1993), 7883.
[28]Pesin, Y. and Weiss, H.. The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7(1) (1997), 89106.
[29]Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990).
[30]Philipp, W. and Stout, W.. Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc. 2 161 (1975).
[31]Rand, D. A.. The singularity spectrum f(α) for cookie-cutters. Ergod. Th. & Dynam. Sys. 9(3) (1989), 527541.
[32]Ruelle, D.. Thermodynamic formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn(Cambridge Mathematical Library). Cambridge University Press, Cambridge, 2004.
[33]Schmeling, J. and Troubetzkoy, S.. Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons. Mat. Sb. 194 (2003), 295309.
[34]Simpelaere, D.. Dimension spectrum of Axiom A diffeomorphisms. II. Gibbs measures. J. Stat. Phys. 76(5–6) (1994), 13591375.
[35]Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 121153.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 42 *
Loading metrics...

Abstract views

Total abstract views: 152 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th March 2018. This data will be updated every 24 hours.