[1]Alexeyev, V. M.. Existence of a bounded function of the maximal spectral type. Ergod. Th. & Dynam. Sys. 2 (1982), 259–261 (originally published in Russian in 1958).

[2]Baake, M.. Diffraction of weighted lattice subsets. Can. Math. Bull. 45 (2002), 483–498.

[3]Baake, M., Birkner, M. and Moody, R V.. Diffraction of stochastic point sets: explicitly computable examples. Commun. Math. Phys. 293 (2009), 611–660.

[4]Baake, M. and van Enter, A. C. D.. Close-packed dimers on the line: diffraction versus dynamical spectrum. J. Stat. Phys. 143 (2011), 88–101.

[5]Baake, M., Gähler, F. and Grimm, U.. Spectral and topological properties of a family of generalised Thue–Morse sequences. J. Math. Phys. 53 (2012), 032701, 24 pp; arXiv:1201.1423. [6]Baake, M., Gähler, F. and Grimm, U.. Examples of substitution systems and their factors. J. Integer Seq. 16 (2013), art. 13.2.14, 18 pp, arXiv:1211.5466. [7]Baake, M. and Grimm, U.. The singular continuous diffraction measure of the Thue–Morse chain. J. Phys. A 41 (2008), 422001, 6 pp; arXiv:0809.0580. [8]Baake, M. and Grimm, U.. Kinematic diffraction from a mathematical viewpoint. Z. Krist. 226 (2011), 711–725.

[9]Baake, M. and Grimm, U.. Squirals and beyond: substitution tilings with singular continuous spectrum. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2012.191, published online 20 March 2013; arXiv:1205.1384. [10]Baake, M. and Grimm, U.. Aperiodic Order *(A Mathematical Invitation, 1)*. Cambridge University Press, Cambridge, 2013.

[11]Baake, M. and Lenz, D.. Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergod. Th. & Dynam. Sys. 24 (2004), 1867–1893.

[12]Baake, M. and Lenz, D.. Deformation of Delone dynamical systems and topological conjugacy. J. Fourier Anal. Appl. 11 (2005), 125–150.

[13]Baake, M., Lenz, D. and Moody, R. V.. Characterization of model sets by dynamical systems. Ergod. Th. & Dynam. Sys. 27 (2007), 341–382.

[14]Baake, M. and Moody, R. V.. Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. (Crelle) 573 (2004), 61–94.

[15]Berg, C. and Forst, G.. Potential Theory on Locally Compact Abelian Groups. Springer, Berlin, 1975.

[16]Cornfeld, I. P., Fomin, S V. and Sinai, Ya. G.. Ergodic Theory. Springer, New York, 1982.

[17]Cortez, M. I., Durand, F. and Petite, S.. Linearly repetitive Delone systems have a finite number of non-periodic Delone system factors. Proc. Amer. Math. Soc. 138 (2010), 1033–1046.

[18]Cowley, J. M.. Diffraction Physics, 3rd edn. North-Holland, Amsterdam, 1995.

[19]Deng, X. and Moody, R. V.. Dworkins argument revisited: point processes, dynamics, diffraction, and correlations. J. Geom. Phys. 58 506–541.

[20]Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory of Compact Spaces *(Lecture Notes in Mathematics, 527)*. Springer, Berlin, 1976.

[21]Durand, F.. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys. 20 (2000), 1061–1078.

[22]Dworkin, S.. Spectral theory and *X*-ray diffraction. J. Math. Phys. 34 (1993), 2965–2967.

[23]Einsiedler, M. and Ward, T.. Ergodic Theory with a View towards Number Theory *(Graduate Texts in Mathematics, 259)*. Springer, London, 2011.

[24]van Enter, A. C. D. and Miȩkisz, J.. How should one define a (weak) crystal? J. Stat. Phys. 66 (1992), 1147–1153.

[25]Fraczek, K. M.. On a function that realizes the maximal spectral type. Studia Math. 124 (1997), 1–7.

[26]Frank, N. P.. Multi-dimensional constant-length substitution sequences. Topol. Appl. 152 (2005), 44–69.

[27]Frettlöh, D. and Richard, C.. Dynamical properties of almost repetitive Delone sets. Discr. Cont. Dynam. Syst. 34 (2014), 531–556.

[28]Halmos, P. R. and von Neumann, J.. Operator methods in classical mechanics. II. Ann. Math. 43 (1942), 332–350.

[29]Herning, J. L.. Spectrum and factors of substitution dynamical systems. *PhD Thesis*, George Washington University, Washington, DC 2013.

[30]Hof, A.. On diffraction by aperiodic structures. Commun. Math. Phys. 169 (1995), 25–43.

[31]Koopman, B. O.. Hamiltonian systems and transformations in Hilbert space. Proc. Natl Acad. Sci. U.S.A. 17 (1931), 315–318.

[32]Lang, S.. Real and Functional Analysis, 3rd edn. Springer, New York, 1993.

[33]Lee, J. Y., Moody, R. V. and Solomyak, B.. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3 (2002), 1003–1018.

[34]Lenz, D.. Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks. Commun. Math. Phys. 287 (2009), 225–258.

[35]Lenz, D. and Moody, R. V.. Extinctions and correlations for uniformly discrete point processes with pure point dynamical spectra. Commun. Math. Phys. 289 (2009), 907–923.

[36]Lenz, D. and Moody, R. V.. Stationary processes with pure point diffraction. *Preprint*, 2011, arXiv: 1111.3617. [37]Lenz, D. and Strungaru, N.. Pure point spectrum for measure dynamical systems on locally compact Abelian groups. J. Math. Pures Appl. 92 (2009), 323–341.

[38]Lind, D. A. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.

[39]Loomis, L. H.. An Introduction to Abstract Harmonic Analysis. Van Nostrand, Princeton, NJ, 1953, Reprint: Dover, New York, 2011.

[40]Müller, P. and Richard, C.. Ergodic properties of randomly coloured point sets. Canad. J. Math. 65 (2013), 349–402.

[41]Nadkarni, M. G.. Spectral Theory of Dynamical Systems. Birkhäuser, Basel, 1998.

[42]von Neumann, J.. Zur Operatorenmethode in der klassischen Mechanik. Ann. of Math. (2) 33 (1933), 587–642.

[43]Ornstein, D.. Factors of Bernoulli shifts are Bernoulli shifts. Adv. Math. 5 (1971), 349–364.

[44]Oxtoby, J. C.. Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116–136.

[45]Pedersen, G. K.. Analysis Now. Springer, New York, 1995, revised printing.

[46]Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis *(Lecture Notes in Mathematics, 1294)*, 2nd edn. Springer, Berlin, 2010.

[47]Robinson, E. A. Jr. Symbolic dynamics and tilings of ℝ^{d}. Proc. Sympos. Appl. Math. 60 (2004), 81–119.

[48]Rudin, W.. Fourier Analysis on Groups. Wiley, New York, 1962.

[49]Rudolph, D. J.. Fundamentals of Measurable Dynamics. Clarendon Press, Oxford, 1990.

[50]Schlottmann, M.. Generalised model sets and dynamical systems. Directions in Mathematical Quasicrystals *(CRM Monograph Series, 13)*. Eds. Baake, M. and Moody, R. V.. American Mathematical Society, Providence, RI, 2000, pp. 143–159.

[51]Walters, P.. An Introduction to Ergodic Theory *(Graduate Texts in Mathematics, 79)*. Springer, New York, 2000, Reprint.

[52]Withers, R. L.. Disorder, structured diffuse scattering and the transmission electron microscope. Z. Krist. 220 (2005), 1027–1034.