[1]Brück, R.. Geometric properties of Julia sets of the composition of polynomials of the form *z* ^{2}+*c* _{n}. Pacific J. Math. 198(2) (2001), 347–372.

[2]Brück, R., Büger, M. and Reitz, S.. Random iterations of polynomials of the form *z* ^{2}+*c* _{n}: connectedness of Julia sets. Ergod. Th. & Dynam. Sys. 19(5) (1999), 1221–1231.

[3]Büger, M.. Self-similarity of Julia sets of the composition of polynomials. Ergod. Th. & Dynam. Sys. 17 (1997), 1289–1297.

[4]Büger, M.. On the composition of polynomials of the form *z*2+*cn*. Math. Ann. 310(4) (1998), 661–683.

[5]Carleson, L., Jones, P. W. and Yoccoz, J.-C.. Julia and John. Bol. Soc. Brasil. Mat. (N.S.) 25(1) (1994), 1–30.

[6]DeMarco, L. and Hruska, S. L.. Axiom A polynomial skew products of and their postcritical sets. Ergod. Th. & Dynam. Sys. 28 (2008), 1749–1779. [8]Devaney, R.. An Introduction to Chaotic Dynamical Systems, 2nd edn. Perseus Books, Reading, MA, 1989.

[9]Fornaess, J. E. and Sibony, N.. Random iterations of rational functions. Ergod. Th. & Dynam. Sys. 11 (1991), 687–708.

[10]Gong, Z., Qiu, W. and Li, Y.. Connectedness of Julia sets for a quadratic random dynamical system. Ergod. Th. & Dynam. Sys. 23 (2003), 1807–1815.

[11]Gong, Z. and Ren, F.. A random dynamical system formed by infinitely many functions. J. Fudan Univ., Nat. Sci. 35 (1996), 387–392.

[12]Hinkkanen, A. and Martin, G. J.. The dynamics of semigroups of rational functions I. Proc. Lond. Math. Soc. (3) 73 (1996), 358–384.

[13]Hinkkanen, A. and Martin, G. J.. Julia sets of rational semigroups. Math. Z. 222(2) (1996), 161–169.

[14]Jonsson, M.. Ergodic properties of fibered rational maps. Ark. Mat. 38 (2000), 281–317.

[15]Lehto, O. and Virtanen, K. I.. Quasiconformal Mappings in the Plane. Springer, Berlin, 1973.

[16]Milnor, J.. Dynamics in One Complex Variable, 3rd edn.*(Annals of Mathematical Studies, 160)*. Princeton University Press, Princeton, NJ, 2006.

[17]Näkki, R. and Väisälä, J.. John discs. Expo. math. 9 (1991), 3–43.

[18]Pilgrim, K. and Lei, T.. Rational maps with disconnected Julia set. Astérisque 261 (2000), 349–384.

[19]Sester, O.. Hyperbolicité des polynômes fibrés. Bull. Soc. Math. France 127(3) (1999), 393–428.

[20]Stankewitz, R.. Completely invariant Julia sets of polynomial semigroups. Proc. Amer. Math. Soc. 127(10) (1999), 2889–2898.

[21]Stankewitz, R.. Completely invariant sets of normality for rational semigroups. Complex Variables, Theory Appl. 40 (2000), 199–210.

[22]Stankewitz, R.. Uniformly perfect sets, rational semigroups, Kleinian groups and IFS’s. Proc. Amer. Math. Soc. 128(9) (2000), 2569–2575.

[23]Stankewitz, R., Sugawa, T. and Sumi, H.. Some counterexamples in dynamics of rational semigroups. Ann. Acad. Sci. Fenn. Math. 29 (2004), 357–366.

[24]Stankewitz, R. and Sumi, H.. Dynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups. *Trans. Amer. Math. Soc.* to appear, http://arxiv.org/abs/0708.3187. [25]Steinmetz, N.. Rational Iteration *(de Gruyter Studies in Mathematics, 16)*. Walter de Gruyter, Berlin, New York, 1993.

[26]Steinsaltz, D.. Random logistic maps Lyapunov exponents. Indag. Math. (N.S.) 12(4) (2001), 557–584.

[27]Sumi, H.. Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products. Ergod. Th. & Dynam. Sys. 21 (2001), 563–603.

[28]Sumi, H.. A correction to the proof of a lemma in ‘Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products’. Ergod. Th. & Dynam. Sys. 21 (2001), 1275–1276.

[29]Sumi, H.. Skew product maps related to finitely generated rational semigroups. Nonlinearity 13 (2000), 995–1019.

[30]Sumi, H.. Semi-hyperbolic fibered rational maps and rational semigroups. Ergod. Th. & Dynam. Sys. 26 (2006), 893–922.

[31]Sumi, H.. Erratum to: ‘Semi-hyperbolic fibered rational maps and rational semigroups’ [*Ergod. Th. & Dynam. Sys.* **26**(3) (2006), 893–922]. *Ergod. Th. & Dynam. Sys.* **28**(3) (2008), 1043–1045.

[32]Sumi, H.. On dynamics of hyperbolic rational semigroups. J. Math. Kyoto Univ. 37(4) (1997), 717–733.

[34]Sumi, H.. Random dynamics of polynomials and devil’s-staircase-like functions in the complex plane. Appl. Math. Comput. 187 (2007), 489–500. (Proceedings paper of a conference.)

[35]Sumi, H.. The space of postcritically bounded 2-generator polynomial semigroups with hyperbolicity. RIMS Kokyuroku 1494 (2006), 62–86. (Proceedings paper.)

[36]Sumi, H.. Interaction cohomology of forward or backward self-similar systems. Adv. Math. 222(3) (2009), 729–781.

[37]Sumi, H.. Dynamics of postcritically bounded polynomial semigroups I: connected components of the Julia sets. *Preprint*, 2008, http://arxiv.org/abs/0811.3664. [38]Sumi, H.. Dynamics of postcritically bounded polynomial semigroups II: fiberwise dynamics and the Julia sets. *Preprint*, 2008.

[40]Sumi, H.. In preparation.

[41]Sumi, H. and Urbański, M.. The equilibrium states for semigroups of rational maps. Monatsh. Math. 156(4) (2009), 371–390.

[42]Sumi, H. and Urbański, M.. Real analyticity of Hausdorff dimension for expanding rational semigroups. *Ergod. Th. & Dynam. Sys.* to appear, http://arxiv.org/abs/0707.2447. [43]Sumi, H. and Urbański, M.. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. *Preprint*, 2008, http://arxiv.org/abs/0811.1809. [44]Sun, Y. and Yang, C.-C.. On the connectivity of the Julia set of a finitely generated rational semigroup. Proc. Amer. Math. Soc. 130(1) (2001), 49–52.

[45]Zhou, W. and Ren, F.. The Julia sets of the random iteration of rational functions. Chinese Sci. Bull. 37(12) (1992), 969–971.