Skip to main content
×
Home
    • Aa
    • Aa

Entropy properties of rational endomorphisms of the Riemann sphere

  • M. Ju. Ljubich (a1)
Abstract
Abstract

In this paper the existence of a unique measure of maximal entropy for rational endomorphisms of the Riemann sphere is established. The equidistribution of pre-images and periodic points with respect to this measure is proved.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Entropy properties of rational endomorphisms of the Riemann sphere
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Entropy properties of rational endomorphisms of the Riemann sphere
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Entropy properties of rational endomorphisms of the Riemann sphere
      Available formats
      ×
Copyright
References
Hide All
[1]Avez A.. Proprietes ergodiques des endomorphisms dilatants de variétés compactes. C.R. Acad. Paris, ser A, 266 (1968), 610612.
[2]Bowen R., Entropy expansive mappings. Trans. Amer. Math. Soc. 164 (1972), 323332.
[3]Bowen R.. Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184 (1973), 125136.
[4]Bowen R.. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes Math. 470. Springer-Verlag: Berlin-Heidelberg-New York, 1975.
[5]Bowen R.. On axiom A diffeomorphisms. Conf. Board Math. Sci. 35 (1978).
[6]Brolin H.. Invariant sets under iteration of rational functions. Arkiv Math. 6 (1965), 103144.
[7]Courant R.. Geometrische Funktionen. Springer-Verlag: Berlin-Göttingen-Heidelberg-New York, 1964.
[8]Denker M. & Keane T.. Eine Bemerkung zur topologischen Entropie. Monatsh. Math. 85 (1978), 177183.
[9]Dinaburg E. J.. On the relations among various entropy characteristics of dynamical systems. Math. USSR Izvestija 5 (1971), #2, 337378.
[10]Fatou P.. Sur les équations fonctionneles. Bull. Soc. Math. France 47 (1919), 161271; 48 (1920), 33–94 & 208–314.
[11]Goodman T.. Relating topological entropy and measure entropy. Bull. London Math. Soc. 3 (1971), 176180.
[12]Goodwin L.. Topological entropy bounds measure-theoretic entropy. Proc. Amer. Math. Soc. 23 (1969), 679688.
[13]Guckenheimer J.. Endomorphisms of the Riemann sphere. Proc. Symp. Pure Math. 14 (1970), 95123.
[14]Jacobs K.. Fastperiodizitätseigenschaften allgemeiner Halbgruppen in Banachräumen. Math. Z. 67 (1957), 8392.
[15]Jakobson M. V.. Structure of polynomial mappings on a singular set. Math. USSR Sbornik 6 (1968), #1, 97114.
[16]Jakobson M. V.. On the problem of classification of polynomial endomorphisms of the plane. Math. USSR Sbornik 9 (1969), #3, 345369.
[17]Jakobson M. V.. On the problem of classification of rational maps of the Riemann sphere. Uspehi Math. Nauk. 28 (1973), 247248.
[18]Julia G.. Mémoire sur l'iteration des fonctions rationneles. J. Math. Pure Appl. 8 (1918), 47245.
[19]Lyubich Yu. I.. Almost periodic functions in the spectral analysis of operators. Soviet Math. Doklady 1 (1960), 593595.
[20]Lyubich Yu. I.. On the boundary spectrum of contractions in Minkowski spaces. Siberian Math. J. 11 #2, (1970), 271279.
[21]Lyubich M. Yu.. Entropy of analytic endomorphisms of the Riemannian sphere. Fund. Anal. Appl. 15 #4, (1981), 300302.
[22]Misiurewicz M.. Diffeomorphisms without any measure with maximal entropy. Bull. Acad. Pol. Sci. 21 (1973), 903910.
[23]Misiurewicz M. & Przytycki F.. Topological entropy and degree of smooth mappings. Bull. Acad. Pol. Sci. 25 (1977), 573574.
[24]Montel P.. Lecons sur les families normales de fonctions analytique et leurs applications. Gauthier-Villars: Paris, 1927.
[25]Rokhlin V. A.. Lectures on the entropy theory of measure-preserving transformations. Russian Math. Surveys 22 (1967), #5, 152.
[26]Ruelle D.. Statistical mechanics of a one-dimensional lattice gas. Commun. Math. Phys. 9 (1968), 267278.
[27]Walters P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 121153.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 91 *
Loading metrics...

Abstract views

Total abstract views: 141 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.