Skip to main content Accessibility help
×
×
Home

Equivariant thinning over a free group

  • TERRY SOO (a1) and AMANDA WILKENS (a1)
Abstract

We construct entropy increasing monotone factors in the context of a Bernoulli shift over the free group of rank at least two.

Copyright
References
Hide All
[1] Angel, O., Holroyd, A. E. and Soo, T.. Deterministic thinning of finite Poisson processes. Proc. Amer. Math. Soc. 139(2) (2011), 707720.
[2] Ball, K.. Factors of independent and identically distributed processes with non-amenable group actions. Ergod. Th. & Dynam. Sys. 25(3) (2005), 711730.
[3] Ball, K.. Monotone factors of i.i.d. processes. Israel J. Math. 150(1) (2005), 205227.
[4] Ball, K.. Poisson thinning by monotone factors. Electron. Commun. Probab. 10 (2005), 6069 (electronic).
[5] Bowen, L. P.. A measure-conjugacy invariant for free group actions. Ann. of Math. (2) 171(2) (2010), 13871400.
[6] Gurel-Gurevich, O. and Peled, R.. Poisson thickening. Israel J. Math. 196(1) (2013), 215234.
[7] Holroyd, A. E., Lyons, R. and Soo, T.. Poisson splitting by factors. Ann. Probab. 39(5) (2011), 19381982.
[8] Katok, A.. Fifty years of entropy in dynamics: 1958–2007. J. Mod. Dyn. 1(4) (2007), 545596.
[9] Keane, M. and Smorodinsky, M.. A class of finitary codes. Israel J. Math. 26 (1977), 352371.
[10] Keane, M. and Smorodinsky, M.. Bernoulli schemes of the same entropy are finitarily isomorphic. Ann. of Math. (2) 109 (1979), 397406.
[11] Lyons, R.. Factors of IID on trees. Combin. Probab. Comput. 26(2) (2017), 285300.
[12] Ornstein, D.. Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4(3) (1970), 337352.
[13] Ornstein, D. S. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48(1) (1987), 1141.
[14] Quas, A. and Soo, T.. A monotone Sinai theorem. Ann. Probab. 44(1) (2016), 107130.
[15] Sinai, Y. G.. Selecta (Ergodic Theory and Dynamical Systems) . Vol. I. Springer, New York, 2010.
[16] Soo, T.. A monotone isomorphism theorem. Probab. Theory Related Fields 167(3–4) (2017), 11171136.
[17] Srivastava, S. M.. A Course on Borel Sets (Graduate Texts in Mathematics, 180) . Springer, New York, 1998.
[18] Strassen, V.. The existence of probability measures with given marginals. Ann. Math. Statist. 36(2) (1965), 423439.
[19] Weiss, B.. The isomorphism problem in ergodic theory. Bull. Amer. Math. Soc. (N.S.) 78(5) (1972), 668684.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed