[1]
Angel, O., Holroyd, A. E. and Soo, T.. Deterministic thinning of finite Poisson processes. Proc. Amer. Math. Soc.
139(2) (2011), 707–720.
[2]
Ball, K.. Factors of independent and identically distributed processes with non-amenable group actions. Ergod. Th. & Dynam. Sys.
25(3) (2005), 711–730.
[3]
Ball, K.. Monotone factors of i.i.d. processes. Israel J. Math.
150(1) (2005), 205–227.
[4]
Ball, K.. Poisson thinning by monotone factors. Electron. Commun. Probab.
10 (2005), 60–69 (electronic).
[5]
Bowen, L. P.. A measure-conjugacy invariant for free group actions. Ann. of Math. (2)
171(2) (2010), 1387–1400.
[6]
Gurel-Gurevich, O. and Peled, R.. Poisson thickening. Israel J. Math.
196(1) (2013), 215–234.
[7]
Holroyd, A. E., Lyons, R. and Soo, T.. Poisson splitting by factors. Ann. Probab.
39(5) (2011), 1938–1982.
[8]
Katok, A.. Fifty years of entropy in dynamics: 1958–2007. J. Mod. Dyn.
1(4) (2007), 545–596.
[9]
Keane, M. and Smorodinsky, M.. A class of finitary codes. Israel J. Math.
26 (1977), 352–371.
[10]
Keane, M. and Smorodinsky, M.. Bernoulli schemes of the same entropy are finitarily isomorphic. Ann. of Math. (2)
109 (1979), 397–406.
[11]
Lyons, R.. Factors of IID on trees. Combin. Probab. Comput.
26(2) (2017), 285–300.
[12]
Ornstein, D.. Bernoulli shifts with the same entropy are isomorphic. Adv. Math.
4(3) (1970), 337–352.
[13]
Ornstein, D. S. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math.
48(1) (1987), 1–141.
[14]
Quas, A. and Soo, T.. A monotone Sinai theorem. Ann. Probab.
44(1) (2016), 107–130.
[15]
Sinai, Y. G.. Selecta
(Ergodic Theory and Dynamical Systems)
. Vol. I.
Springer, New York, 2010.
[16]
Soo, T.. A monotone isomorphism theorem. Probab. Theory Related Fields
167(3–4) (2017), 1117–1136.
[17]
Srivastava, S. M.. A Course on Borel Sets
(Graduate Texts in Mathematics, 180)
. Springer, New York, 1998.
[18]
Strassen, V.. The existence of probability measures with given marginals. Ann. Math. Statist.
36(2) (1965), 423–439.
[19]
Weiss, B.. The isomorphism problem in ergodic theory. Bull. Amer. Math. Soc. (N.S.)
78(5) (1972), 668–684.