[1]
Addas-Zanata, S. and Tal, F. A.. Support of maximizing measures for typical C
^{0} dynamics on compact manifolds. Discrete Contin. Dyn. Syst.
26 (2010), 795–804.
[2]
Anagnostopoulou, V.. Sturmian measures and stochastic dominance in ergodic optimization. PhD Thesis, Queen Mary University of London, 2008.
[3]
Anagnostopoulou, V.. Stochastic dominance for shift-invariant measures. Discrete Contin. Dyn. Syst., to appear.
[4]
Anagnostopoulou, V., Díaz-Ordaz Avila, K., Jenkinson, O. and Richard, C.. Sturmian maximizing measures for the piecewise-linear cosine family. Bull. Braz. Math. Soc. (N.S.)
43 (2012), 285–302.
[5]
Anagnostopoulou, V. and Jenkinson, O.. Which beta-shifts have a largest invariant measure?
J. Lond. Math. Soc.
72 (2009), 445–464.
[6]
Anantharaman, N.. On the zero-temperature or vanishing viscosity limit for Markov processes arising from Lagrangian dynamics. J. Eur. Math. Soc. (JEMS)
6 (2004), 207–276.
[7]
Aubrun, N. and Sablik, M.. Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Appl. Math.
126 (2013), 35–63.
[8]
Avramidou, P.. Optimization of ergodic averages along squares. Dyn. Syst.
25 (2010), 547–553.
[9]
Baladi, V.. Positive Transfer Operators and Decay of Correlations
(Advanced Series in Nonlinear Dynamics, 16)
. World Scientific, Singapore, 2000.
[10]
Baraviera, A., Cioletti, L., Lopes, A. O., Mohr, J. and Souza, R.. On the general one-dimensional XY model: positive and zero temperature, selection and non-selection. Rev. Math. Phys.
23 (2011), 1063–1113.
[11]
Baraviera, A. T., Leplaideur, R. and Lopes, A. O.. Selection of ground states in the zero temperature limit for a one-parameter family of potentials. SIAM J. Appl. Dyn. Syst.
11 (2012), 243–260.
[12]
Baraviera, A. T., Leplaideur, R. and Lopes, A. O.. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra, Publicações Matemáticas do IMPA
(29^{
o
} Coloquio Brasileiro de Matemática)
. IMPA, Rio de Janeiro, 2013.
[13]
Baraviera, A. T., Lopes, A. O. and Mengue, J.. On the selection of sub-action and measure for a subclass of potentials defined by P. Walters. Ergod. Th. & Dynam. Sys.
33 (2013), 1338–1362.
[14]
Baraviera, A. T., Lopes, A. O. and Thieullen, Ph.. A large deviation principle for equilibrium states of Hölder potentials: the zero temperature case. Stoch. Dyn.
6 (2006), 77–96.
[15]
Batista, T., Gonschorowski, J. and Tal, F.. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete Contin. Dyn.
35 (2015), 3315–3326.
[16]
Bawa, V. S.. Stochastic dominance: a research bibliography. Manag. Sci.
28 (1982), 698–712.
[17]
Bissacot, R. and Freire, R. Jr. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergod. Th. & Dynam. Sys.
34 (2014), 1103–1115.
[18]
Bissacot, R. and Garibaldi, E.. Weak KAM methods and ergodic optimal problems for countable Markov shifts. Bull. Braz. Math. Soc. (N.S.)
41 (2010), 321–338.
[19]
Bissacot, R., Garibaldi, E. and Thieullen, Ph.. Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2016.57. Published online: 19 September 2016. [20]
Blokh, A.. Functional rotation numbers for one dimensional maps. Trans. Amer. Math. Soc.
347 (1995), 499–513.
[21]
Blondel, V. D., Theys, J. and Vladimirov, A. A.. An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal. Appl.
24 (2003), 963–970.
[22]
Bochi, J. and Morris, I. D.. Continuity properties of the lower spectral radius. Proc. Lond. Math. Soc.
110 (2015), 477–509.
[23]
Bochi, J. and Rams, M.. The entropy of Lyapunov-optimizing measures of some matrix cocycles. J. Mod. Dyn.
10 (2016), 255–286.
[24]
Bochi, J. and Zhang, Y.. Ergodic optimization of prevalent super-continuous functions. Int. Math. Res. Not. IMRN
19 (2016), 5988–6017.
[25]
Bohr, T. and Rand, D.. The entropy function for characteristic exponents. Physica D
25 (1986), 387–398.
[26]
Bousch, T.. Le poisson n’a pas d’arêtes. Ann. Inst. Henri Poincaré Probab. Stat.
36 (2000), 489–508.
[27]
Bousch, T.. La condition de Walters. Ann. Sci. ENS
34 (2001), 287–311.
[28]
Bousch, T.. Un lemme de Mañé bilatéral. C. R. Acad. Sci. Paris Sér. I
335 (2002), 533–536.
[29]
Bousch, T.. Nouvelle preuve d’un théorème de Yuan et Hunt. Bull. Soc. Math. France
126 (2008), 227–242.
[30]
Bousch, T.. Le lemme de Mañé-Conze-Guivarc’h pour les systèmes amphi-dynamiques rectifiables. Ann. Fac. Sci. Toulouse Math.
20 (2011), 1–14.
[31]
Bousch, T.. Genericity of minimizing periodic orbits, after Contreras. British Math. Colloq. talk. (April 2014), QMUL.
[32]
Bousch, T. and Jenkinson, O.. Cohomology classes of dynamically non-negative C
^{
k
} functions. Invent. Math.
148 (2002), 207–217.
[33]
Bousch, T. and Mairesse, J.. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. Amer. Math. Soc.
15 (2002), 77–111.
[34]
Bowen, R.. Topological entropy for noncompact sets. Trans. Amer. Math. Soc.
184 (1973), 125–136.
[35]
Branco, F.. Sub-actions and maximizing measures for one-dimensional transformations with a critical point. Discrete Cont. Dyn. Syst.
17 (2007), 271–280.
[36]
Branton, S.. Sub-actions for Young towers. Discrete Cont. Dyn. Syst.
22 (2008), 541–556.
[37]
Brémont, J.. On the behaviour of Gibbs measures at temperature zero. Nonlinearity
16 (2003), 419–426.
[38]
Brémont, J.. Finite flowers and maximizing measures for generic Lipschitz functions on the circle. Nonlinearity
19 (2006), 813–828.
[39]
Brémont, J.. Dynamics of injective quasi-contractions. Ergod. Th. & Dynam. Sys.
26 (2006), 19–44.
[40]
Brémont, J.. Entropy and maximizing measures of generic continuous functions. C. R. Math. Acad. Sci. Sér. I
346 (2008), 199–201.
[41]
Brémont, J. and Buczolich, Z.. Maximizing points and coboundaries for an irrational rotation on a circle. Ergod. Th. & Dynam. Sys.
33 (2013), 24–48.
[42]
Bressaud, X. and Quas, A.. Rate of approximation of minimizing measures. Nonlinearity
20 (2007), 845–853.
[43]
Bullett, S. and Sentenac, P.. Ordered orbits of the shift, square roots, and the devil’s staircase. Math. Proc. Camb. Phil. Soc.
115 (1994), 451–481.
[44]
Carlson, D. A., Haurie, A. B. and Leizarowitz, A.. Infinite Horizon Optimal Control: Deterministic and Stochastic Systems, 2nd edn. Springer, 1991.
[45]
Chazottes, J.-R., Gambaudo, J.M. and Ugalde, E.. Zero-temperature limit of one dimensional Gibbs states via renormalization: the case of locally constant potentials. Ergod. Th. & Dynam. Sys.
31 (2011), 1109–1161.
[46]
Chazottes, J.-R. and Hochman, M.. On the zero-temperature limit of Gibbs states. Comm. Math. Phys.
297 (2010), 265–281.
[47]
Chen, Y. and Zhao, Y.. Ergodic optimization for a sequence of continuous functions. Chinese J. Contemp. Math.
34 (2013), 351–360.
[48]
Coelho, Z. N.. Entropy and ergodicity of skew-products over subshifts of finite type and central limit asymptotics. PhD Thesis, Warwick University, 1990.
[49]
Collier, D. and Morris, I. D.. Approximating the maximum ergodic average via periodic orbits. Ergod. Th. & Dynam. Sys.
28 (2008), 1081–1090.
[50]
Contreras, G.. Ground states are generically a periodic orbit. Invent. Math.
205 (2016), 383–412.
[51]
Contreras, G., Lopes, A. O. and Thieullen, Ph.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. & Dynam. Sys.
21 (2001), 1379–1409.
[52]
Conze, J.-P. and Guivarc’h, Y.. Croissance des sommes ergodiques, Manuscript, circa 1993.
[53]
Coronel, D. and Rivera-Letelier, J.. Sensitive dependence of Gibbs measures at low temperatures. J. Stat. Phys.
160 (2015), 1658–1683.
[54]
Coronel, D. and Rivera-Letelier, J.. Sensitive dependence of geometric Gibbs states. Preprint, 2017,arXiv:1708.03965. [55]
Daubechies, I. and Lagarias, J. C.. Sets of matrices all infinite products of which converge. Linear Algebra Appl.
162 (1992), 227–261.
[56]
Davie, A., Urbański, M. and Zdunik, A.. Maximizing measures of metrizable non-compact spaces. Proc. Edinb. Math. Soc.
50 (2007), 123–151.
[57]
Durand, B., Romashchenko, A. and Shen, A.. Fixed-point tile sets and their applications. J. Comput. System Sci.
78 (2012), 731–764.
[58]
van Enter, A. C. D. and Ruszel, W. M.. Chaotic temperature dependence at zero temperature. J. Stat. Phys.
127 (2007), 567–573.
[59]
Fathi, A.. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I
324(9) (1997), 1043–1046.
[60]
Fathi, A.. Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I
325(6) (1997), 649–652.
[61]
Fathi, A.. Orbites hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I
326(10) (1998), 1213–1216.
[62]
Fathi, A.. Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I
327(3) (1998), 267–270.
[63]
Freire, R. and Vargas, V.. Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts. Trans. Amer. Math. Soc.
Preprint, 2015, arXiv:1511.01527, to appear, doi:10.1090/tran/7291. [64]
Garibaldi, E. and Gomes, J. T. A.. Aubry set for asymptotically sub-additive potentials. Stoch. Dyn.
16 (2016), 1660009.
[65]
Garibaldi, E. and Lopes, A. O.. Functions for relative maximization. Dyn. Syst.
22 (2007), 511–528.
[66]
Garibaldi, E. and Lopes, A. O.. On Aubry–Mather theory for symbolic dynamics. Ergod. Th. & Dynam. Sys.
28 (2008), 791–815.
[67]
Garibaldi, E., Lopes, A. O. and Thieullen, Ph.. On calibrated and separating sub-actions. Bull. Braz. Math. Soc. (N.S.)
40 (2009), 577–602.
[68]
Garibaldi, E. and Thieullen, Ph.. Description of some ground states by Puiseux techniques. J. Stat. Phys.
146 (2012), 125–180.
[69]
Geller, W. and Misiurewicz, M.. Rotation and entropy. Trans. Amer. Math. Soc.
351 (1999), 2927–2948.
[70]
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I and Shraiman, B. J.. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A
33 (1986), 1141–1151.
[71]
Hare, K. G., Morris, I. D., Sidorov, N. and Theys, J.. An explicit counterexample to the Lagarias–Wang finiteness conjecture. Adv. Math.
226 (2011), 4667–4701.
[72]
Harriss, E. and Jenkinson, O.. Flattening functions on flowers. Ergod. Th. & Dynam. Sys.
27 (2007), 1865–1886.
[73]
Hentschel, H. and Procaccia, I.. The infinite number of generalized dimensions of fractals and strange attractors. Physica D
8 (1983), 435–444.
[74]
Hochman, M.. On the dynamics and recursive properties of multidimensional symbolic systems. Invent. Math.
176 (2009), 131–167.
[75]
Hunt, B. R. and Ott, E.. Optimal periodic orbits of chaotic systems. Phys. Rev. Lett.
76 (1996), 2254–2257.
[76]
Hunt, B. R. and Ott, E.. Optimal periodic orbits of chaotic systems occur at low period. Phys. Rev. E
54 (1996), 328–337.
[77]
Hunt, B. R., Sauer, T. and Yorke, J. A.. Prevalence: a translation-invariant ‘almost every’ on infinite-dimensional spaces. Bull Amer. Math. Soc. (N.S.)
27 (1992), 217–238.
[78]
Iommi, G.. Ergodic optimization for renewal type shifts. Monatsh. Math.
150 (2007), 91–95.
[79]
Iommi, G. and Todd, M.. Natural equilibrium states for multimodal maps. Comm. Math. Phys.
300 (2010), 65–94.
[80]
Iommi, G. and Yayama, Y.. Zero temperature limits of Gibbs states for almost-additive potentials. J. Stat. Phys.
155 (2014), 23–46.
[81]
Jenkinson, O.. Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures. PhD Thesis, Warwick University, 1996.
[82]
Jenkinson, O.. Frequency locking on the boundary of the barycentre set. Exp. Math.
9 (2000), 309–317.
[83]
Jenkinson, O.. Geometric barycentres of invariant measures for circle maps. Ergod. Th. & Dynam. Sys.
21 (2001), 511–532.
[84]
Jenkinson, O.. Directional entropy of rotation sets. C. R. Acad. Sci. Paris Sér. I
332 (2001), 921–926.
[85]
Jenkinson, O.. Rotation, entropy, and equilibrium states. Trans. Amer. Math. Soc.
353 (2001), 3713–3739.
[86]
Jenkinson, O.. Maximum hitting frequency and fastest mean return time. Nonlinearity
18 (2005), 2305–2321.
[87]
Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst.
15 (2006), 197–224.
[88]
Jenkinson, O.. Every ergodic measure is uniquely maximizing. Discrete Contin. Dyn. Syst.
16 (2006), 383–392.
[89]
Jenkinson, O.. Optimization and majorization of invariant measures. Electron. Res. Announc. Amer. Math. Soc.
13 (2007), 1–12.
[90]
Jenkinson, O.. A partial order on × 2-invariant measures. Math. Res. Lett.
15 (2008), 893–900.
[91]
Jenkinson, O.. On sums of powers of inverse complete quotients. Proc. Amer. Math. Soc.
136 (2008), 1023–1027.
[92]
Jenkinson, O.. Balanced words and majorization. Discrete Math. Algorithms Appl.
1 (2009), 463–483.
[93]
Jenkinson, O., Mauldin, R. D. and Urbański, M.. Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. J. Stat. Phys.
119 (2005), 765–776.
[94]
Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for countable alphabet subshifts of finite type. Ergod. Th. & Dynam. Sys.
26 (2006), 1791–1803.
[95]
Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for non-compact dynamical systems. Dyn. Sys.
22 (2007), 379–388.
[96]
Jenkinson, O. and Morris, I. D.. Lyapunov optimizing measures for C
^{1} expanding maps of the circle. Ergod. Th. & Dynam. Sys.
28 (2008), 1849–1860.
[97]
Jenkinson, O. and Pollicott, M.. Joint spectral radius, Sturmian measures, and the finiteness conjecture. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2017.18. Published online: 02 May 2017. [98]
Jenkinson, O. and Steel, J.. Majorization of invariant measures for orientation-reversing maps. Ergod. Th. & Dynam. Sys.
30 (2010), 1471–1483.
[99]
Jungers, R.. The Joint Spectral Radius
(Lecture Notes in Control and Information Sciences, 385)
. Springer, Berlin, 2009.
[100]
Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.
[101]
Keller, G.. Equilibrium States in Ergodic Theory. Cambridge University Press, Cambridge, 1998.
[102]
Kempton, T.. Zero temperature limits of Gibbs equilibrium states for countable Markov shifts. J. Stat. Phys.
143 (2011), 795–806.
[103]
Kertz, R. P. and Rösler, U.. Stochastic and convex orders and lattices of probability measures, with a Martingale interpretation. Israel J. Math.
77 (1992), 129–164.
[104]
Kucherenko, T. and Wolf, C.. Geometry and entropy of generalized rotation sets. Israel J. Math.
199 (2014), 791–829.
[105]
Kucherenko, T. and Wolf, C.. Ground states and zero-temperature measures at the boundary of rotation sets. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2017.27. Published online: 02 May 2017. [106]
Lagarias, J. C. and Wang, Y.. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl.
214 (1995), 17–42.
[107]
Lanford, O. E.. Entropy and Equilibrium States in Classical Statistical Mechanics
(Springer Lecture Notes in Physics, 20)
. Ed. Lenard, A.. Springer, Berlin, 1973, pp. 1–113.
[108]
Leplaideur, R.. A dynamical proof for convergence of Gibbs measures at temperature zero. Nonlinearity
18 (2005), 2847–2880.
[109]
Leplaideur, R.. Flatness is a criterion for selection of maximizing measures. J. Stat. Phys.
147 (2012), 728–757.
[110]
Livšic, A.. Homology properties of Y-systems. Math. Zametki
10 (1971), 758–763.
[111]
Lopes, A. O. and Mengue, J.. Zeta measures and thermodynamic formalism for temperature zero. Bull. Braz. Math. Soc. (N.S.)
41 (2010), 321–338.
[112]
Lopes, A. O. and Mengue, J.. Selection of measure and a large deviation principle for the general one-dimensional XY model. Dynam. Syst.
29 (2014), 24–39.
[113]
Lopes, A. O., Mohr, J., Souza, R. and Thieullen, Ph.. Negative entropy, zero temperature and Markov chains on the interval. Bull. Braz. Math. Soc. (N.S.)
40 (2009), 1–52.
[114]
Lopes, A. O., Rosas, V. and Ruggiero, R.. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete Contin. Dyn. Syst.
17 (2007), 403–422.
[115]
Lopes, A. O. and Thieullen, Ph.. Sub-actions for Anosov diffeomorphisms. Geometric Methods in Dynamics II. Astérisque
287 (2003), 135–146.
[116]
Lopes, A. O. and Thieullen, Ph.. Sub-actions for Anosov flows. Ergod. Th. & Dynam. Sys.
25 (2005), 605–628.
[117]
Lopes, A. O. and Thieullen, Ph.. Mather measures and the Bowen-Series transformation. Ann. Inst. H. Poincaré Anal. Non Linéaire
23 (2006), 663–682.
[118]
Mañé, R.. On the minimizing measures of Lagrangian dynamical systems. Nonlinearity
5 (1992), 623–638.
[119]
Mañé, R.. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity
9 (1996), 273–310.
[120]
Marshall, A. W. and Olkin, I.. Inequalities: Theory of Majorization and its Applications
(Mathematics in Science and Engineering, 143)
. Academic Press, New York, 1979.
[121]
Mauldin, R. D. and Urbański, M.. Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge, 2003.
[122]
McGoff, K. and Nobel, A. B.. Optimal tracking for dynamical systems. Preprint, 2016, arXiv:1601.05033. [123]
Morita, T. and Tokunaga, Y.. Measures with maximum total exponent and generic properties of C
^{1} expanding maps. Hiroshima Math. J.
43 (2013), 351–370.
[124]
Morris, I. D.. Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet subshifts of finite type. J. Stat. Phys.
126 (2007), 315–324.
[125]
Morris, I. D.. A sufficient condition for the subordination principle in ergodic optimization. Bull. Lond. Math. Soc.
39 (2007), 214–220.
[126]
Morris, I. D.. Maximizing measures of generic Hölder functions have zero entropy. Nonlinearity
21 (2008), 993–1000.
[127]
Morris, I. D.. The Mañé–Conze–Guivarc’h lemma for intermittent maps of the circle. Ergod. Th. & Dynam. Sys.
29 (2009), 1603–1611.
[128]
Morris, I. D.. Ergodic optimization for generic continuous functions. Discrete Contin. Dyn. Syst.
27 (2010), 383–388.
[129]
Morris, I. D.. Criteria for the stability of the finiteness property and for the uniqueness of Barabanov norms. Linear Algebra Appl.
443 (2010), 1301–1311.
[130]
Morris, I. D.. A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory. Adv. Math.
225 (2010), 3425–3445.
[131]
Morris, I. D.. The generalised Berger–Wang formula and the spectral radius of linear cocycles. J. Funct. Anal.
262 (2012), 811–824.
[132]
Morris, I. D.. Mather sets for sequences of matrices and applications to the study of joint spectral radii. Proc. Lond. Math. Soc.
107 (2013), 121–150.
[133]
Morris, I. D. and Sidorov, N.. On a devil’s staircase associated to the joint spectral radii of a family of pairs of matrices. J. Eur. Math. Soc. (JEMS)
15 (2013), 1747–1782.
[134]
Morse, M. and Hedlund, G. A.. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math.
62 (1940), 1–42.
[135]
Newhouse, S.. Continuity properties of entropy. Ann. of Math. (2)
129 (1989), 215–235.
[136]
Pesin, Ya.. Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago, IL, 1997.
[137]
Pesin, Ya. and Pitskel’, B.. Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl.
18 (1984), 307–318.
[138]
Parry, W.. Handwritten notes on zero temperature limits of equilibrium states, circa 1990.
[139]
Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque
187–188 (1990), 1–268.
[140]
Pollicott, M. and Sharp, R.. Rates of recurrence for ℤ^{
q
} and ℝ^{
q
} extensions of subshifts of finite type. J. Lond. Math. Soc.
49 (1994), 401–416.
[141]
Pollicott, M. and Sharp, R.. Livsic theorems, maximizing measures and the stable norm. Dyn. Syst.
19 (2004), 75–88.
[142]
Quas, A. and Siefken, J.. Ergodic optimization of supercontinuous functions on shift spaces. Ergod. Th. & Dyn. Syst.
32 (2012), 2071–2082.
[143]
Rota, G.-C. and Strang, G.. A note on the joint spectral radius. Indag. Math.
22 (1960), 379–381.
[144]
Ruelle, D.. Thermodynamic Formalism. Addison-Wesley, Reading, MA, 1978.
[145]
Savchenko, S. V.. Homological inequalities for finite topological Markov chains. Funct. Anal. Appl.
33 (1999), 236–238.
[146]
Schmeling, J.. On the completeness of multifractal spectra. Ergod. Th. & Dynam. Sys.
19 (1999), 1595–1616.
[147]
Shaked, M. and Shanthikumar, J. G.. Stochastic Orders. Springer, New York, 2007.
[148]
Sigmund, K.. Generic properties of invariant measures for Axiom A diffeomorphisms. Invent. Math.
11 (1970), 99–109.
[149]
Souza, R.. Sub-actions for weakly hyperbolic one-dimensional systems. Dyn. Syst.
18 (2003), 165–179.
[150]
Steel, J.. Concave unimodal maps have no majorisation relations between their ergodic measures. Proc. Amer. Math. Soc.
139 (2011), 2553–2558.
[151]
Sturman, R. and Stark, J.. Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity
13 (2000), 113–143.
[152]
Takahasi, H.. Equilibrium measures at temperature zero for Hénon-like maps at the first bifurcation. SIAM J. Appl. Dyn. Syst.
15 (2016), 106–124.
[153]
Tal, F. A. and Addas-Zanata, S.. On maximizing measures of homeomorphisms on compact manifolds. Fund. Math.
200 (2008), 145–159.
[154]
Tal, F. A. and Addas-Zanata, S.. Maximizing measures for endomorphisms of the circle. Nonlinearity
21 (2008), 2347–2359.
[155]
Veerman, P.. Symbolic dynamics of order-preserving orbits. Physica D
29 (1987), 191–201.
[156]
Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc.
236 (1978), 127–153.
[157]
Walters, P.. An Introduction to Ergodic Theory. Springer, New York, 1981.
[158]
Yang, T.-H., Hunt, B. R. and Ott, E.. Optimal periodic orbits of continuous time chaotic systems. Phys. Rev. E
62 (2000), 1950–1959.
[159]
Yuan, G. and Hunt, B. R.. Optimal orbits of hyperbolic systems. Nonlinearity
12 (1999), 1207–1224.
[160]
Ziemian, K.. Rotation sets for subshifts of finite type. Fund. Math.
146 (1995), 189–201.
[161]
Zhao, Y.. Conditional ergodic averages for asymptotically additive potentials. Preprint, 2014,arXiv:1405.1648. [162]
Zhao, Y.. Maximal integral over observable measures. Acta Math. Sinica
32 (2016), 571–578.