Skip to main content Accessibility help
×
Home

Ergodic optimization in dynamical systems

  • OLIVER JENKINSON (a1)

Abstract

Ergodic optimization is the study of problems relating to maximizing orbits and invariant measures, and maximum ergodic averages. An orbit of a dynamical system is called $f$ -maximizing if the time average of the real-valued function $f$ along the orbit is larger than along all other orbits, and an invariant probability measure is called $f$ -maximizing if it gives $f$ a larger space average than any other invariant probability measure. In this paper, we consider the main strands of ergodic optimization, beginning with an influential model problem, and the interpretation of ergodic optimization as the zero temperature limit of thermodynamic formalism. We describe typical properties of maximizing measures for various spaces of functions, the key tool of adding a coboundary so as to reveal properties of these measures, as well as certain classes of functions where the maximizing measure is known to be Sturmian.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ergodic optimization in dynamical systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ergodic optimization in dynamical systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ergodic optimization in dynamical systems
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[1] Addas-Zanata, S. and Tal, F. A.. Support of maximizing measures for typical C 0 dynamics on compact manifolds. Discrete Contin. Dyn. Syst. 26 (2010), 795804.
[2] Anagnostopoulou, V.. Sturmian measures and stochastic dominance in ergodic optimization. PhD Thesis, Queen Mary University of London, 2008.
[3] Anagnostopoulou, V.. Stochastic dominance for shift-invariant measures. Discrete Contin. Dyn. Syst., to appear.
[4] Anagnostopoulou, V., Díaz-Ordaz Avila, K., Jenkinson, O. and Richard, C.. Sturmian maximizing measures for the piecewise-linear cosine family. Bull. Braz. Math. Soc. (N.S.) 43 (2012), 285302.
[5] Anagnostopoulou, V. and Jenkinson, O.. Which beta-shifts have a largest invariant measure? J. Lond. Math. Soc. 72 (2009), 445464.
[6] Anantharaman, N.. On the zero-temperature or vanishing viscosity limit for Markov processes arising from Lagrangian dynamics. J. Eur. Math. Soc. (JEMS) 6 (2004), 207276.
[7] Aubrun, N. and Sablik, M.. Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Appl. Math. 126 (2013), 3563.
[8] Avramidou, P.. Optimization of ergodic averages along squares. Dyn. Syst. 25 (2010), 547553.
[9] Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16) . World Scientific, Singapore, 2000.
[10] Baraviera, A., Cioletti, L., Lopes, A. O., Mohr, J. and Souza, R.. On the general one-dimensional XY model: positive and zero temperature, selection and non-selection. Rev. Math. Phys. 23 (2011), 10631113.
[11] Baraviera, A. T., Leplaideur, R. and Lopes, A. O.. Selection of ground states in the zero temperature limit for a one-parameter family of potentials. SIAM J. Appl. Dyn. Syst. 11 (2012), 243260.
[12] Baraviera, A. T., Leplaideur, R. and Lopes, A. O.. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra, Publicações Matemáticas do IMPA (29 o Coloquio Brasileiro de Matemática) . IMPA, Rio de Janeiro, 2013.
[13] Baraviera, A. T., Lopes, A. O. and Mengue, J.. On the selection of sub-action and measure for a subclass of potentials defined by P. Walters. Ergod. Th. & Dynam. Sys. 33 (2013), 13381362.
[14] Baraviera, A. T., Lopes, A. O. and Thieullen, Ph.. A large deviation principle for equilibrium states of Hölder potentials: the zero temperature case. Stoch. Dyn. 6 (2006), 7796.
[15] Batista, T., Gonschorowski, J. and Tal, F.. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete Contin. Dyn. 35 (2015), 33153326.
[16] Bawa, V. S.. Stochastic dominance: a research bibliography. Manag. Sci. 28 (1982), 698712.
[17] Bissacot, R. and Freire, R. Jr. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergod. Th. & Dynam. Sys. 34 (2014), 11031115.
[18] Bissacot, R. and Garibaldi, E.. Weak KAM methods and ergodic optimal problems for countable Markov shifts. Bull. Braz. Math. Soc. (N.S.) 41 (2010), 321338.
[19] Bissacot, R., Garibaldi, E. and Thieullen, Ph.. Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2016.57. Published online: 19 September 2016.
[20] Blokh, A.. Functional rotation numbers for one dimensional maps. Trans. Amer. Math. Soc. 347 (1995), 499513.
[21] Blondel, V. D., Theys, J. and Vladimirov, A. A.. An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal. Appl. 24 (2003), 963970.
[22] Bochi, J. and Morris, I. D.. Continuity properties of the lower spectral radius. Proc. Lond. Math. Soc. 110 (2015), 477509.
[23] Bochi, J. and Rams, M.. The entropy of Lyapunov-optimizing measures of some matrix cocycles. J. Mod. Dyn. 10 (2016), 255286.
[24] Bochi, J. and Zhang, Y.. Ergodic optimization of prevalent super-continuous functions. Int. Math. Res. Not. IMRN 19 (2016), 59886017.
[25] Bohr, T. and Rand, D.. The entropy function for characteristic exponents. Physica D 25 (1986), 387398.
[26] Bousch, T.. Le poisson n’a pas d’arêtes. Ann. Inst. Henri Poincaré Probab. Stat. 36 (2000), 489508.
[27] Bousch, T.. La condition de Walters. Ann. Sci. ENS 34 (2001), 287311.
[28] Bousch, T.. Un lemme de Mañé bilatéral. C. R. Acad. Sci. Paris Sér. I 335 (2002), 533536.
[29] Bousch, T.. Nouvelle preuve d’un théorème de Yuan et Hunt. Bull. Soc. Math. France 126 (2008), 227242.
[30] Bousch, T.. Le lemme de Mañé-Conze-Guivarc’h pour les systèmes amphi-dynamiques rectifiables. Ann. Fac. Sci. Toulouse Math. 20 (2011), 114.
[31] Bousch, T.. Genericity of minimizing periodic orbits, after Contreras. British Math. Colloq. talk. (April 2014), QMUL.
[32] Bousch, T. and Jenkinson, O.. Cohomology classes of dynamically non-negative C k functions. Invent. Math. 148 (2002), 207217.
[33] Bousch, T. and Mairesse, J.. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. Amer. Math. Soc. 15 (2002), 77111.
[34] Bowen, R.. Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184 (1973), 125136.
[35] Branco, F.. Sub-actions and maximizing measures for one-dimensional transformations with a critical point. Discrete Cont. Dyn. Syst. 17 (2007), 271280.
[36] Branton, S.. Sub-actions for Young towers. Discrete Cont. Dyn. Syst. 22 (2008), 541556.
[37] Brémont, J.. On the behaviour of Gibbs measures at temperature zero. Nonlinearity 16 (2003), 419426.
[38] Brémont, J.. Finite flowers and maximizing measures for generic Lipschitz functions on the circle. Nonlinearity 19 (2006), 813828.
[39] Brémont, J.. Dynamics of injective quasi-contractions. Ergod. Th. & Dynam. Sys. 26 (2006), 1944.
[40] Brémont, J.. Entropy and maximizing measures of generic continuous functions. C. R. Math. Acad. Sci. Sér. I 346 (2008), 199201.
[41] Brémont, J. and Buczolich, Z.. Maximizing points and coboundaries for an irrational rotation on a circle. Ergod. Th. & Dynam. Sys. 33 (2013), 2448.
[42] Bressaud, X. and Quas, A.. Rate of approximation of minimizing measures. Nonlinearity 20 (2007), 845853.
[43] Bullett, S. and Sentenac, P.. Ordered orbits of the shift, square roots, and the devil’s staircase. Math. Proc. Camb. Phil. Soc. 115 (1994), 451481.
[44] Carlson, D. A., Haurie, A. B. and Leizarowitz, A.. Infinite Horizon Optimal Control: Deterministic and Stochastic Systems, 2nd edn. Springer, 1991.
[45] Chazottes, J.-R., Gambaudo, J.M. and Ugalde, E.. Zero-temperature limit of one dimensional Gibbs states via renormalization: the case of locally constant potentials. Ergod. Th. & Dynam. Sys. 31 (2011), 11091161.
[46] Chazottes, J.-R. and Hochman, M.. On the zero-temperature limit of Gibbs states. Comm. Math. Phys. 297 (2010), 265281.
[47] Chen, Y. and Zhao, Y.. Ergodic optimization for a sequence of continuous functions. Chinese J. Contemp. Math. 34 (2013), 351360.
[48] Coelho, Z. N.. Entropy and ergodicity of skew-products over subshifts of finite type and central limit asymptotics. PhD Thesis, Warwick University, 1990.
[49] Collier, D. and Morris, I. D.. Approximating the maximum ergodic average via periodic orbits. Ergod. Th. & Dynam. Sys. 28 (2008), 10811090.
[50] Contreras, G.. Ground states are generically a periodic orbit. Invent. Math. 205 (2016), 383412.
[51] Contreras, G., Lopes, A. O. and Thieullen, Ph.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. & Dynam. Sys. 21 (2001), 13791409.
[52] Conze, J.-P. and Guivarc’h, Y.. Croissance des sommes ergodiques, Manuscript, circa 1993.
[53] Coronel, D. and Rivera-Letelier, J.. Sensitive dependence of Gibbs measures at low temperatures. J. Stat. Phys. 160 (2015), 16581683.
[54] Coronel, D. and Rivera-Letelier, J.. Sensitive dependence of geometric Gibbs states. Preprint, 2017,arXiv:1708.03965.
[55] Daubechies, I. and Lagarias, J. C.. Sets of matrices all infinite products of which converge. Linear Algebra Appl. 162 (1992), 227261.
[56] Davie, A., Urbański, M. and Zdunik, A.. Maximizing measures of metrizable non-compact spaces. Proc. Edinb. Math. Soc. 50 (2007), 123151.
[57] Durand, B., Romashchenko, A. and Shen, A.. Fixed-point tile sets and their applications. J. Comput. System Sci. 78 (2012), 731764.
[58] van Enter, A. C. D. and Ruszel, W. M.. Chaotic temperature dependence at zero temperature. J. Stat. Phys. 127 (2007), 567573.
[59] Fathi, A.. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I 324(9) (1997), 10431046.
[60] Fathi, A.. Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I 325(6) (1997), 649652.
[61] Fathi, A.. Orbites hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I 326(10) (1998), 12131216.
[62] Fathi, A.. Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I 327(3) (1998), 267270.
[63] Freire, R. and Vargas, V.. Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts. Trans. Amer. Math. Soc. Preprint, 2015, arXiv:1511.01527, to appear, doi:10.1090/tran/7291.
[64] Garibaldi, E. and Gomes, J. T. A.. Aubry set for asymptotically sub-additive potentials. Stoch. Dyn. 16 (2016), 1660009.
[65] Garibaldi, E. and Lopes, A. O.. Functions for relative maximization. Dyn. Syst. 22 (2007), 511528.
[66] Garibaldi, E. and Lopes, A. O.. On Aubry–Mather theory for symbolic dynamics. Ergod. Th. & Dynam. Sys. 28 (2008), 791815.
[67] Garibaldi, E., Lopes, A. O. and Thieullen, Ph.. On calibrated and separating sub-actions. Bull. Braz. Math. Soc. (N.S.) 40 (2009), 577602.
[68] Garibaldi, E. and Thieullen, Ph.. Description of some ground states by Puiseux techniques. J. Stat. Phys. 146 (2012), 125180.
[69] Geller, W. and Misiurewicz, M.. Rotation and entropy. Trans. Amer. Math. Soc. 351 (1999), 29272948.
[70] Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I and Shraiman, B. J.. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33 (1986), 11411151.
[71] Hare, K. G., Morris, I.  D., Sidorov, N. and Theys, J.. An explicit counterexample to the Lagarias–Wang finiteness conjecture. Adv. Math. 226 (2011), 46674701.
[72] Harriss, E. and Jenkinson, O.. Flattening functions on flowers. Ergod. Th. & Dynam. Sys. 27 (2007), 18651886.
[73] Hentschel, H. and Procaccia, I.. The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8 (1983), 435444.
[74] Hochman, M.. On the dynamics and recursive properties of multidimensional symbolic systems. Invent. Math. 176 (2009), 131167.
[75] Hunt, B. R. and Ott, E.. Optimal periodic orbits of chaotic systems. Phys. Rev. Lett. 76 (1996), 22542257.
[76] Hunt, B. R. and Ott, E.. Optimal periodic orbits of chaotic systems occur at low period. Phys. Rev. E 54 (1996), 328337.
[77] Hunt, B. R., Sauer, T. and Yorke, J. A.. Prevalence: a translation-invariant ‘almost every’ on infinite-dimensional spaces. Bull Amer. Math. Soc. (N.S.) 27 (1992), 217238.
[78] Iommi, G.. Ergodic optimization for renewal type shifts. Monatsh. Math. 150 (2007), 9195.
[79] Iommi, G. and Todd, M.. Natural equilibrium states for multimodal maps. Comm. Math. Phys. 300 (2010), 6594.
[80] Iommi, G. and Yayama, Y.. Zero temperature limits of Gibbs states for almost-additive potentials. J. Stat. Phys. 155 (2014), 2346.
[81] Jenkinson, O.. Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures. PhD Thesis, Warwick University, 1996.
[82] Jenkinson, O.. Frequency locking on the boundary of the barycentre set. Exp. Math. 9 (2000), 309317.
[83] Jenkinson, O.. Geometric barycentres of invariant measures for circle maps. Ergod. Th. & Dynam. Sys. 21 (2001), 511532.
[84] Jenkinson, O.. Directional entropy of rotation sets. C. R. Acad. Sci. Paris Sér. I 332 (2001), 921926.
[85] Jenkinson, O.. Rotation, entropy, and equilibrium states. Trans. Amer. Math. Soc. 353 (2001), 37133739.
[86] Jenkinson, O.. Maximum hitting frequency and fastest mean return time. Nonlinearity 18 (2005), 23052321.
[87] Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. 15 (2006), 197224.
[88] Jenkinson, O.. Every ergodic measure is uniquely maximizing. Discrete Contin. Dyn. Syst. 16 (2006), 383392.
[89] Jenkinson, O.. Optimization and majorization of invariant measures. Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 112.
[90] Jenkinson, O.. A partial order on × 2-invariant measures. Math. Res. Lett. 15 (2008), 893900.
[91] Jenkinson, O.. On sums of powers of inverse complete quotients. Proc. Amer. Math. Soc. 136 (2008), 10231027.
[92] Jenkinson, O.. Balanced words and majorization. Discrete Math. Algorithms Appl. 1 (2009), 463483.
[93] Jenkinson, O., Mauldin, R. D. and Urbański, M.. Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. J. Stat. Phys. 119 (2005), 765776.
[94] Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for countable alphabet subshifts of finite type. Ergod. Th. & Dynam. Sys. 26 (2006), 17911803.
[95] Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for non-compact dynamical systems. Dyn. Sys. 22 (2007), 379388.
[96] Jenkinson, O. and Morris, I. D.. Lyapunov optimizing measures for C 1 expanding maps of the circle. Ergod. Th. & Dynam. Sys. 28 (2008), 18491860.
[97] Jenkinson, O. and Pollicott, M.. Joint spectral radius, Sturmian measures, and the finiteness conjecture. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2017.18. Published online: 02 May 2017.
[98] Jenkinson, O. and Steel, J.. Majorization of invariant measures for orientation-reversing maps. Ergod. Th. & Dynam. Sys. 30 (2010), 14711483.
[99] Jungers, R.. The Joint Spectral Radius (Lecture Notes in Control and Information Sciences, 385) . Springer, Berlin, 2009.
[100] Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.
[101] Keller, G.. Equilibrium States in Ergodic Theory. Cambridge University Press, Cambridge, 1998.
[102] Kempton, T.. Zero temperature limits of Gibbs equilibrium states for countable Markov shifts. J. Stat. Phys. 143 (2011), 795806.
[103] Kertz, R. P. and Rösler, U.. Stochastic and convex orders and lattices of probability measures, with a Martingale interpretation. Israel J. Math. 77 (1992), 129164.
[104] Kucherenko, T. and Wolf, C.. Geometry and entropy of generalized rotation sets. Israel J. Math. 199 (2014), 791829.
[105] Kucherenko, T. and Wolf, C.. Ground states and zero-temperature measures at the boundary of rotation sets. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2017.27. Published online: 02 May 2017.
[106] Lagarias, J. C. and Wang, Y.. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 214 (1995), 1742.
[107] Lanford, O. E.. Entropy and Equilibrium States in Classical Statistical Mechanics (Springer Lecture Notes in Physics, 20) . Ed. Lenard, A.. Springer, Berlin, 1973, pp. 1113.
[108] Leplaideur, R.. A dynamical proof for convergence of Gibbs measures at temperature zero. Nonlinearity 18 (2005), 28472880.
[109] Leplaideur, R.. Flatness is a criterion for selection of maximizing measures. J. Stat. Phys. 147 (2012), 728757.
[110] Livšic, A.. Homology properties of Y-systems. Math. Zametki 10 (1971), 758763.
[111] Lopes, A. O. and Mengue, J.. Zeta measures and thermodynamic formalism for temperature zero. Bull. Braz. Math. Soc. (N.S.) 41 (2010), 321338.
[112] Lopes, A. O. and Mengue, J.. Selection of measure and a large deviation principle for the general one-dimensional XY model. Dynam. Syst. 29 (2014), 2439.
[113] Lopes, A. O., Mohr, J., Souza, R. and Thieullen, Ph.. Negative entropy, zero temperature and Markov chains on the interval. Bull. Braz. Math. Soc. (N.S.) 40 (2009), 152.
[114] Lopes, A. O., Rosas, V. and Ruggiero, R.. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete Contin. Dyn. Syst. 17 (2007), 403422.
[115] Lopes, A. O. and Thieullen, Ph.. Sub-actions for Anosov diffeomorphisms. Geometric Methods in Dynamics II. Astérisque 287 (2003), 135146.
[116] Lopes, A. O. and Thieullen, Ph.. Sub-actions for Anosov flows. Ergod. Th. & Dynam. Sys. 25 (2005), 605628.
[117] Lopes, A. O. and Thieullen, Ph.. Mather measures and the Bowen-Series transformation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 663682.
[118] Mañé, R.. On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992), 623638.
[119] Mañé, R.. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996), 273310.
[120] Marshall, A. W. and Olkin, I.. Inequalities: Theory of Majorization and its Applications (Mathematics in Science and Engineering, 143) . Academic Press, New York, 1979.
[121] Mauldin, R. D. and Urbański, M.. Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge, 2003.
[122] McGoff, K. and Nobel, A. B.. Optimal tracking for dynamical systems. Preprint, 2016, arXiv:1601.05033.
[123] Morita, T. and Tokunaga, Y.. Measures with maximum total exponent and generic properties of C 1 expanding maps. Hiroshima Math. J. 43 (2013), 351370.
[124] Morris, I. D.. Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet subshifts of finite type. J. Stat. Phys. 126 (2007), 315324.
[125] Morris, I. D.. A sufficient condition for the subordination principle in ergodic optimization. Bull. Lond. Math. Soc. 39 (2007), 214220.
[126] Morris, I. D.. Maximizing measures of generic Hölder functions have zero entropy. Nonlinearity 21 (2008), 9931000.
[127] Morris, I. D.. The Mañé–Conze–Guivarc’h lemma for intermittent maps of the circle. Ergod. Th. & Dynam. Sys. 29 (2009), 16031611.
[128] Morris, I. D.. Ergodic optimization for generic continuous functions. Discrete Contin. Dyn. Syst. 27 (2010), 383388.
[129] Morris, I. D.. Criteria for the stability of the finiteness property and for the uniqueness of Barabanov norms. Linear Algebra Appl. 443 (2010), 13011311.
[130] Morris, I. D.. A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory. Adv. Math. 225 (2010), 34253445.
[131] Morris, I. D.. The generalised Berger–Wang formula and the spectral radius of linear cocycles. J. Funct. Anal. 262 (2012), 811824.
[132] Morris, I. D.. Mather sets for sequences of matrices and applications to the study of joint spectral radii. Proc. Lond. Math. Soc. 107 (2013), 121150.
[133] Morris, I. D. and Sidorov, N.. On a devil’s staircase associated to the joint spectral radii of a family of pairs of matrices. J. Eur. Math. Soc. (JEMS) 15 (2013), 17471782.
[134] Morse, M. and Hedlund, G. A.. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940), 142.
[135] Newhouse, S.. Continuity properties of entropy. Ann. of Math. (2) 129 (1989), 215235.
[136] Pesin, Ya.. Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago, IL, 1997.
[137] Pesin, Ya. and Pitskel’, B.. Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl. 18 (1984), 307318.
[138] Parry, W.. Handwritten notes on zero temperature limits of equilibrium states, circa 1990.
[139] Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990), 1268.
[140] Pollicott, M. and Sharp, R.. Rates of recurrence for ℤ q and ℝ q extensions of subshifts of finite type. J. Lond. Math. Soc. 49 (1994), 401416.
[141] Pollicott, M. and Sharp, R.. Livsic theorems, maximizing measures and the stable norm. Dyn. Syst. 19 (2004), 7588.
[142] Quas, A. and Siefken, J.. Ergodic optimization of supercontinuous functions on shift spaces. Ergod. Th. & Dyn. Syst. 32 (2012), 20712082.
[143] Rota, G.-C. and Strang, G.. A note on the joint spectral radius. Indag. Math. 22 (1960), 379381.
[144] Ruelle, D.. Thermodynamic Formalism. Addison-Wesley, Reading, MA, 1978.
[145] Savchenko, S. V.. Homological inequalities for finite topological Markov chains. Funct. Anal. Appl. 33 (1999), 236238.
[146] Schmeling, J.. On the completeness of multifractal spectra. Ergod. Th. & Dynam. Sys. 19 (1999), 15951616.
[147] Shaked, M. and Shanthikumar, J. G.. Stochastic Orders. Springer, New York, 2007.
[148] Sigmund, K.. Generic properties of invariant measures for Axiom A diffeomorphisms. Invent. Math. 11 (1970), 99109.
[149] Souza, R.. Sub-actions for weakly hyperbolic one-dimensional systems. Dyn. Syst. 18 (2003), 165179.
[150] Steel, J.. Concave unimodal maps have no majorisation relations between their ergodic measures. Proc. Amer. Math. Soc. 139 (2011), 25532558.
[151] Sturman, R. and Stark, J.. Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity 13 (2000), 113143.
[152] Takahasi, H.. Equilibrium measures at temperature zero for Hénon-like maps at the first bifurcation. SIAM J. Appl. Dyn. Syst. 15 (2016), 106124.
[153] Tal, F. A. and Addas-Zanata, S.. On maximizing measures of homeomorphisms on compact manifolds. Fund. Math. 200 (2008), 145159.
[154] Tal, F. A. and Addas-Zanata, S.. Maximizing measures for endomorphisms of the circle. Nonlinearity 21 (2008), 23472359.
[155] Veerman, P.. Symbolic dynamics of order-preserving orbits. Physica D 29 (1987), 191201.
[156] Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 127153.
[157] Walters, P.. An Introduction to Ergodic Theory. Springer, New York, 1981.
[158] Yang, T.-H., Hunt, B. R. and Ott, E.. Optimal periodic orbits of continuous time chaotic systems. Phys. Rev. E 62 (2000), 19501959.
[159] Yuan, G. and Hunt, B. R.. Optimal orbits of hyperbolic systems. Nonlinearity 12 (1999), 12071224.
[160] Ziemian, K.. Rotation sets for subshifts of finite type. Fund. Math. 146 (1995), 189201.
[161] Zhao, Y.. Conditional ergodic averages for asymptotically additive potentials. Preprint, 2014,arXiv:1405.1648.
[162] Zhao, Y.. Maximal integral over observable measures. Acta Math. Sinica 32 (2016), 571578.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed