Skip to main content
    • Aa
    • Aa

Escape rates for Gibbs measures


In this paper we study the asymptotic behaviour of the escape rate of a Gibbs measure supported on a conformal repeller through a small hole. There are additional applications to the convergence of the Hausdorff dimension of the survivor set.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]R. Bowen . Markov partitions and minimal sets for Axiom A diffeomorphisms. Amer. J. Math. 92 (1970), 907918.

[4]M. Boyle , D. Lind and D. Rudolph . The automorphism group of a shift of finite type. Trans. Amer. Math. Soc. 306(1) (1988), 71114.

[6]L. A. Bunimovich and C. P. Dettmann . Peeping at chaos: nondestructive monitoring of chaotic systems by measuring long-time escape rates. Europhys. Lett. EPL 80(4) (2007), 6, Art. 40001.

[8]P. Collet , S. Martínez and B. Schmitt . The Pianigiani–Yorke measure for topological Markov chains. Israel J. Math. 97 (1997), 6170.

[9]M. F. Demers and L.-S. Young . Escape rates and conditionally invariant measures. Nonlinearity 19(2) (2006), 377397.

[10]H. Hennion . Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Amer. Math. Soc. 118(2) (1993), 627634.

[11]D. Hensley . Continued fraction Cantor sets, Hausdorff dimension, and functional analysis. J. Number Theory 40(3) (1992), 336358.

[13]C. T. Ionescu Tulcea and G. Marinescu . Théorie ergodique pour des classes d’opérations non complètement continues. Ann. of Math. (2) 52 (1950), 140147.

[14]G. Keller . Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete. 69(3) (1985), 461478.

[16]G. Keller and C. Liverani . Rare events, escape rates and quasistationarity: some exact formulae. J. Stat. Phys. 135(3) (2009), 519534.

[17]A. Lasota and J. A. Yorke . On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481488.

[18]D. A. Lind . Perturbations of shifts of finite type. SIAM J. Discrete Math. 2(3) (1989), 350365.

[19]C. Liverani and V. Maume-Deschamps . Lasota–Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set. Ann. Inst. H. Poincaré Probab. Statist. 39(3) (2003), 385412.

[20]W. Parry . Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 5566.

[22]Y. Pesin and H. Weiss . A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions. J. Stat. Phys. 86(1–2) (1997), 233275.

[23]Y. B. Pesin . Dimension Theory in Dynamical Systems (Chicago Lectures in Mathematics). University of Chicago Press, Chicago, IL, 1997.

[26]P. Walters . An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *