Skip to main content

Exactness and maximal automorphic factors of unimodal interval maps

  • HENK BRUIN (a1) and JANE HAWKINS (a2)

We study exactness and maximal automorphic factors of C^3 unimodal maps of the interval. We show that for a large class of infinitely renormalizable maps, the maximal automorphic factor is an odometer with an ergodic non-singular measure. We give conditions under which maps with absorbing Cantor sets have an irrational rotation on a circle as a maximal automorphic factor, as well as giving exact examples of this type. We also prove that every C^3 S-unimodal map with no attractor is exact with respect to Lebesgue measure. Additional results about measurable attractors in locally compact metric spaces are given.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 55 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.