No CrossRef data available.
Published online by Cambridge University Press: 12 March 2009
Higher-rank graphs (or k-graphs) were introduced by Kumjian and Pask to provide combinatorial models for the higher-rank Cuntz–Krieger C*-algebras of Robertson and Steger. Here we consider a family of finite 2-graphs whose path spaces are dynamical systems of algebraic origin, as studied by Schmidt and others. We analyse the C*-algebras of these 2-graphs, find criteria under which they are simple and purely infinite, and compute their K-theory. We find examples whose C*-algebras satisfy the hypotheses of the classification theorem of Kirchberg and Phillips, but are not isomorphic to the C*-algebras of ordinary directed graphs.