[1]
Adams, S. and Ballmann, W.. Amenable isometry groups of Hadamard spaces. Math. Ann.
312(1) (1998), 183–195.

[2]
Babillot, M.. On the mixing property for hyperbolic systems. Israel J. Math.
129 (2002), 61–76.

[3]
Ballmann, W.. Lectures on Spaces of Non-Positive Curvature
*(DMV Seminar, 25)*
. Birkhäuser, Basel, 1995, 112 pp; with an appendix by Misha Brin.

[4]
Ballmann, W. and Buyalo, S.. Periodic rank one geodesics in Hadamard spaces. Geometric and Probabilistic Structures in Dynamics
*(Contemporary Mathematics, 469)*
. American Mathematical Society, Providence, RI, 2008, pp. 19–27.

[5]
Bowen, R.. Periodic points and measures for Axiom *A* diffeomorphisms. Trans. Amer. Math. Soc.
154 (1971), 377–397.

[6]
Bowen, R.. Maximizing entropy for a hyperbolic flow. Math. Systems Theory
7(4) (1973), 300–303.

[7]
Bridson, M. R. and Haefliger, A.. Metric Spaces of Non-Positive Curvature
*(Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319)*
. Springer, Berlin, 1999, 643 pp.

[8]
Burago, D., Burago, Y. and Ivanov, S.. A course in Metric Geometry
*(Graduate Studies in Mathematics, 33)*
. American Mathematical Society, Providence, RI, 2001, 415 pp.

[9]
Burns, K. and Spatzier, R.. Manifolds of non-positive curvature and their buildings. Publ. Math. Inst. Hautes Études Sci.(65) (1987), 35–59.

[10]
Caprace, P.-E. and Sageev, M.. Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal.
21(4) (2011), 851–891.

[11]
Chen, S. S. and Eberlein, P.. Isometry groups of simply connected manifolds of non-positive curvature. Illinois J. Math.
24(1) (1980), 73–103.

[12]
Dal’bo, F.. Remarques sur le spectre des longueurs d’une surface et comptages. Bol. Soc. Brasil. Mat. (N.S.)
30(2) (1999), 199–221.

[13]
Eberlein, P.. Geodesic flows on negatively curved manifolds. I. Ann. of Math. (2)
95 (1972), 492–510.

[14]
Eberlein, P.. Geodesic flows on negatively curved manifolds. II. Trans. Amer. Math. Soc.
178 (1973), 57–82.

[15]
Guralnik, D. P. and Swenson, E. L.. A ‘transversal’ for minimal invariant sets in the boundary of a CAT(0) group. Trans. Amer. Math. Soc.
365(6) (2013), 3069–3095.

[16]
Hamenstädt, U.. Cocycles, Hausdorff measures and cross ratios. Ergod. Th. & Dynam. Sys.
17(5) (1997), 1061–1081.

[17]
Hamenstädt, U.. Rank-one isometries of proper CAT(0)-spaces. Discrete Groups and Geometric Structures
*(Contemporary Mathematics, 501)*
. American Mathematical Society, Providence, RI, 2009, pp. 43–59.

[18]
Hopf, E.. Ergodic theory and the geodesic flow on surfaces of constant negative curvature. Bull. Amer. Math. Soc. (N.S.)
77 (1971), 863–877.

[19]
Kaimanovich, V. A.. Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds. Ann. Inst. H. Poincaré Phys. Théor.
53(4) (1990), 361–393; hyperbolic behaviour of dynamical systems (Paris, 1990).

[20]
Kim, I.. Marked length rigidity of rank one symmetric spaces and their product. Topology
40(6) (2001), 1295–1323.

[21]
Knieper, G.. On the asymptotic geometry of non-positively curved manifolds. Geom. Funct. Anal.
7(4) (1997), 755–782.

[22]
Lytchak, A.. Rigidity of spherical buildings and joins. Geom. Funct. Anal.
15(3) (2005), 720–752.

[23]
Margulis, G. A.. On Some Aspects of the Theory of Anosov Systems
*(Springer Monographs in Mathematics)*
. Springer, Berlin, 2004, 139 pp; with a survey by Richard Sharp: Periodic orbits of hyperbolic flows, Translated from the Russian by Valentina Vladimirovna Szulikowska.

[24]
Ontaneda, P.. Some remarks on the geodesic completeness of compact non-positively curved spaces. Geom. Dedicata
104 (2004), 25–35.

[25]
Otal, J.-P.. Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative. Rev. Mat. Iberoam.
8(3) (1992), 441–456.

[26]
Patterson, S. J.. The limit set of a Fuchsian group. Acta Math.
136(3–4) (1976), 241–273.

[27]
Ricks, R.. Flat strips, Bowen–Margulis measures, and mixing of the geodesic flow for rank one
$\text{CAT}(0)$
spaces. *PhD Thesis*, University of Michigan, 2015.
[28]
Roblin, T.. Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. (N.S.)(95) (2003), vi+96.

[29]
Sullivan, D.. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. Inst. Hautes Études Sci.(50) (1979), 171–202.

[30]
Sullivan, D.. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math.
153(3–4) (1984), 259–277.