Skip to main content
    • Aa
    • Aa

Flow equivalence of graph algebras

  • TERESA BATES (a1) and DAVID PASK (a2)

This paper explores the effect of various graphical constructions upon the associated graph C*-algebras. The graphical constructions in question arise naturally in the study of flow equivalence for topological Markov chains. We prove that out-splittings give rise to isomorphic graph algebras, and in-splittings give rise to strongly Morita equivalent C*-algebras. We generalize the notion of a delay as defined in (D. Drinen, Preprint, Dartmouth College, 2001) to form in-delays and out-delays. We prove that these constructions give rise to Morita equivalent graph C*-algebras. We provide examples which suggest that our results are the most general possible in the setting of the C*-algebras of arbitrary directed graphs.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 74 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.