Skip to main content Accessibility help
×
Home

Harmonic measures and the foliated geodesic flow for foliations with negatively curved leaves

  • SÉBASTIEN ALVAREZ (a1)

Abstract

In this paper we define a notion of Gibbs measure for the geodesic flow tangent to a foliation with negatively curved leaves and associated to a particular potential $H$ . We prove that there is a canonical bijective correspondence between these measures and Garnett’s harmonic measures.

Copyright

References

Hide All
[Al1]Alvarez, S.. Gibbs u-states for the foliated geodesic flow and transverse invariant measures. Preprint,arXiv:1311.7121.
[Al2]Alvarez, S.. Gibbs measures for foliated bundles with negatively curved leaves. Preprint, arXiv: 1311.3574.
[Al3]Alvarez, S.. Mesures de Gibbs et mesures harmoniques pour les feuilletages aux feuilles courbées négativement. PhD Thesis, L’Université de Bourgogne, 2013, available online at http://tel.archives-ouvertes.fr/tel-00958080.
[AS]Anderson, M.T. and Schoen, R.. Positive harmonic functions on complete manifolds of negative curvature. Ann. of Math. 121(2) (1985), 429461.
[BMar]Bakhtin, Y. and Martínez, M.. A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), 10781089.
[BDV]Bonatti, C., Díaz, L. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity. A global geometric and probabilistic perspective (Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III). Springer, Berlin, 2005.
[CM]Connell, C. and Martínez, M.. Harmonic and invariant measures on foliated spaces. Preprint,http://mypage.iu.edu/∼connell/publications/HarmonicMeas.pdf.
[Gar]Garnett, L.. Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51 (1983), 285311.
[Gh]Ghys, E.. Topologie des feuilles génériques. Ann. of Math. 141(2) (1995), 387422.
[H]Haefliger, A.. Foliations and compactly generated pseudogroups. Foliations: Geometry and Dynamics (Warsaw, 2000). World Scientific, River Edge, NJ, 2002, pp. 275295.
[L1]Ledrappier, F.. Propriété de poisson et courbure négative. C. R. Acad. Sci. Paris, Ser I. 305 (1987), 191194.
[L2]Ledrappier, F.. Ergodic properties of Brownian motion on covers of compact negatively curved manifolds. Bol. Soc. Bras. Mat. 19 (1988), 115140.
[K]Kaimanovich, V.. An entropy criterion for maximality of boundary of random walks on discrete groups. Dokl. Akad. Nauk SSSR 280 (1985), 193197.
[Ma]Mañé, R.. Ergodic Theory and Differentiable Dynamics. Springer, Berlin, 1987.
[M]Martínez, M.. Measures on hyperbolic surface laminations. Ergod. Th. & Dynam. Sys. 26 (2006), 847867.
[Pr]Prat, J.J.. Étude asymptotique du mouvement Brownien sur une variété riemannienne á courbure négative. C. R. Acad. Sci. Paris, Sér. A–B 272 (1971), 15861589.
[Ro]Rokhlin, V.A.. On the fundamental ideas of measure theory. Amer. Math. Soc. Transl. 10 (1962), 152.
[Su]Sullivan, D.. The dirichlet problem at infinity for a negatively curved manifold. J. Differential Geom. 18 (1983), 723732.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed