Skip to main content
×
Home
    • Aa
    • Aa

Hölder shadowing on finite intervals

  • SERGEY TIKHOMIROV (a1) (a2)
Abstract

For any ${\it\theta},{\it\omega}>1/2$, we prove that, if any $d$-pseudotrajectory of length ${\sim}1/d^{{\it\omega}}$ of a diffeomorphism $f\in C^{2}$ can be $d^{{\it\theta}}$-shadowed by an exact trajectory, then $f$ is structurally stable. Previously it was conjectured [S. M. Hammel et al. Do numerical orbits of chaotic dynamical processes represent true orbits. J. Complexity3 (1987), 136–145; S. M. Hammel et al. Numerical orbits of chaotic processes represent true orbits. Bull. Amer. Math. Soc.19 (1988), 465–469] that for ${\it\theta}={\it\omega}=1/2$, this property holds for a wide class of non-uniformly hyperbolic diffeomorphisms. In the proof, we introduce the notion of a sublinear growth property for inhomogeneous linear equations and prove that it implies exponential dichotomy.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

L. Barreira and C. Valls . Stable manifolds for nonautonomous equations without exponential dichotomy. J. Differential Equations 221 (2006), 5890.

C. Chicone and Yu Latushkin . Evolution Semigroups in Dynamical Systems and Differential Equations (Mathematical Surveys and Monographs, 70). American Mathematical Society, Providence, RI, 1999.

C. V. Coffman and J. J. Schaeffer . Dichotomies for linear difference equations. Math. Ann. 172 (1967), 139166.

S. M. Hammel , J. A. Yorke and C. Grebogi . Do numerical orbits of chaotic dynamical processes represent true orbits. J. Complexity 3 (1987), 136145.

S. M. Hammel , J. A. Yorke and C. Grebogi . Numerical orbits of chaotic processes represent true orbits. Bull. Amer. Math. Soc. 19 (1988), 465469.

N. T. Huy and N. Van Minh . Exponential dichotomy of difference equations and applications to evolution equations on the half-line. Comput. Math. Appl. 42 (2001), 301311.

R. Mañé . Characterizations of AS diffeomorphisms. Geometry and Topology (Lecture Notes in Mathematics, 597). Springer, Berlin, 1977, pp. 389394.

A. V. Osipov , S. Yu Pilyugin and S. B. Tikhomirov . Periodic shadowing and Ω-stability. Regul. Chaotic Dyn. 15 (2010), 404417.

K. Palmer . Shadowing in Dynamical Systems. Theory and Applications. Kluwer, Dordrecht, 2000.

K. J. Palmer . Exponential dichotomies and transversal homoclinic points. J. Differential Equations 55 (1984), 225256.

K. J. Palmer . Exponential dichotomies and Fredholm operators. Proc. Amer. Math. Soc. 104 (1988), 149156.

K. J. Palmer . Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dynam. Rep. 1 (1988), 265306.

S. Yu Pilyugin . Generalizations of the notion of hyperbolicity. J. Difference Equ. Appl. 12 (2006), 271282.

S. Yu Pilyugin . Variational shadowing. Discrete Contin. Dyn. Syst. Ser. B 14 (2010), 733737.

S. Yu Pilyugin and S. B. Tikhomirov . Lipschitz Shadowing implies structural stability. Nonlinearity 23 (2010), 25092515.

S. Yu Pilyugin . Theory of pseudo-orbit shadowing in dynamical systems. Differ. Equ. 47 (2011), 19291938.

C. Robinson . Stability theorems and hyperbolicity in dynamical systems. Rocky Mountain J. Math. 7 (1977), 425437.

V. Slyusarchuk . Exponential dichotomy of solutions of discrete systems. Ukrain. Mat. Zh. 35 (1983), 109115.

D. Todorov . Generalizations of analogs of theorems of Maizel and Pliss and their application in Shadowing Theory. Discrete Contin. Dyn. Syst. Ser. A 33 (2013), 41874205.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 53 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th May 2017. This data will be updated every 24 hours.