Skip to main content Accessibility help

Hölder shadowing on finite intervals


For any ${\it\theta},{\it\omega}>1/2$ , we prove that, if any $d$ -pseudotrajectory of length ${\sim}1/d^{{\it\omega}}$ of a diffeomorphism  $f\in C^{2}$ can be $d^{{\it\theta}}$ -shadowed by an exact trajectory, then $f$ is structurally stable. Previously it was conjectured [S. M. Hammel et al. Do numerical orbits of chaotic dynamical processes represent true orbits. J. Complexity3 (1987), 136–145; S. M. Hammel et al. Numerical orbits of chaotic processes represent true orbits. Bull. Amer. Math. Soc.19 (1988), 465–469] that for ${\it\theta}={\it\omega}=1/2$ , this property holds for a wide class of non-uniformly hyperbolic diffeomorphisms. In the proof, we introduce the notion of a sublinear growth property for inhomogeneous linear equations and prove that it implies exponential dichotomy.

Hide All
[1]Anosov, D. V.. On a class of invariant sets of smooth dynamical systems. Proc. 5th Int. Conf. on Nonlinear Oscillators (Kiev, 1970). Vol. 2. Mathematical Institute of the Ukranian Academy of Science, Kiev, 1970, pp. 3945.
[2]Barreira, L. and Valls, C.. Stable manifolds for nonautonomous equations without exponential dichotomy. J. Differential Equations 221 (2006), 5890.
[3]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.
[4]Chicone, C. and Latushkin, Yu. Evolution Semigroups in Dynamical Systems and Differential Equations (Mathematical Surveys and Monographs, 70). American Mathematical Society, Providence, RI, 1999.
[5]Coffman, C. V. and Schaeffer, J. J.. Dichotomies for linear difference equations. Math. Ann. 172 (1967), 139166.
[6]Coppel, W. A.. Dichotomies in stability theory (Lecture Notes in Mathematics, 629). Springer, Berlin, 1978.
[7]Fisher, T.. PhD Thesis, Penn State University, 2006.
[8]Gogolev, A.. Diffeomorphisms Hölder conjugate to Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 30 (2010), 441456.
[9]Hammel, S. M., Yorke, J. A. and Grebogi, C.. Do numerical orbits of chaotic dynamical processes represent true orbits. J. Complexity 3 (1987), 136145.
[10]Hammel, S. M., Yorke, J. A. and Grebogi, C.. Numerical orbits of chaotic processes represent true orbits. Bull. Amer. Math. Soc. 19 (1988), 465469.
[11]Huy, N. T. and Van Minh, N.. Exponential dichotomy of difference equations and applications to evolution equations on the half-line. Comput. Math. Appl. 42 (2001), 301311.
[12]Koropecki, A. and Pujals, E.. Some consequences of the shadowing property in low dimensions. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2012.195, published online 8 March 2013.
[13]Maizel, A. D.. On stability of solutions of systems of differential equations. Ural. Politehn. Inst. Trudy 51 (1954), 2050.
[14]Mañé, R.. Characterizations of AS diffeomorphisms. Geometry and Topology (Lecture Notes in Mathematics, 597). Springer, Berlin, 1977, pp. 389394.
[15]Morimoto, A.. The method of pseudo-orbit tracing and stability of dynamical systems. Seminar Note. Vol. 39. Tokyo University, Tokyo, 1979.
[16]Osipov, A. V., Pilyugin, S. Yu and Tikhomirov, S. B.. Periodic shadowing and Ω-stability. Regul. Chaotic Dyn. 15 (2010), 404417.
[17]Palmer, K.. Shadowing in Dynamical Systems. Theory and Applications. Kluwer, Dordrecht, 2000.
[18]Palmer, K. J.. Exponential dichotomies and transversal homoclinic points. J. Differential Equations 55 (1984), 225256.
[19]Palmer, K. J.. Exponential dichotomies and Fredholm operators. Proc. Amer. Math. Soc. 104 (1988), 149156.
[20]Palmer, K. J.. Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dynam. Rep. 1 (1988), 265306.
[21]Yu Pilyugin, S.. Shadowing in Dynamical Systems (Lecture Notes in Mathematics, 1706). Springer, Berlin, 1999.
[22]Yu Pilyugin, S.. Generalizations of the notion of hyperbolicity. J. Difference Equ. Appl. 12 (2006), 271282.
[23]Pilyugin, S. Yu. Variational shadowing. Discrete Contin. Dyn. Syst. Ser. B 14 (2010), 733737.
[24]Pilyugin, S. Yu and Tikhomirov, S. B.. Lipschitz Shadowing implies structural stability. Nonlinearity 23 (2010), 25092515.
[25]Yu Pilyugin, S.. Theory of pseudo-orbit shadowing in dynamical systems. Differ. Equ. 47 (2011), 19291938.
[26]Pliss, V. A.. Bounded solutions of nonhomogeneous linear systems of differential equations. Problems in the Asymptotic Theory of Nonlinear Oscillations. Naukova Dumbka, Kiev, 1977, pp. 168173.
[27]Robinson, C.. Stability theorems and hyperbolicity in dynamical systems. Rocky Mountain J. Math. 7 (1977), 425437.
[28]Sawada, K.. Extended f-orbits are approximated by orbits. Nagoya Math. J. 79 (1980), 3345.
[29]Slyusarchuk, V.. Exponential dichotomy of solutions of discrete systems. Ukrain. Mat. Zh. 35 (1983), 109115.
[30]Todorov, D.. Generalizations of analogs of theorems of Maizel and Pliss and their application in Shadowing Theory. Discrete Contin. Dyn. Syst. Ser. A 33 (2013), 41874205.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed