Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-17T05:38:19.887Z Has data issue: false hasContentIssue false

Hopf type rigidity for thermostats

Published online by Cambridge University Press:  13 August 2013

YERNAT M. ASSYLBEKOV
Affiliation:
Department of Mathematics, University of Washington, Seattle, WA 98195-4350, USA email y_assylbekov@yahoo.com
NURLAN S. DAIRBEKOV
Affiliation:
Kazakh British Technical University, Tole bi 59, 050000 Almaty, Kazakhstan email Nurlan.Dairbekov@gmail.com

Abstract

We study the motion of a particle on a Riemannian 2-torus under the influence of a magnetic field and a Gaussian thermostat. We prove a Hopf type rigidity for this dynamical system without conjugate points.

Type
Research Article
Copyright
© Cambridge University Press, 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anosov, D. V. and Sinai, Y. G.. Certain smooth ergodic systems. Uspekhi Mat. Nauk 22 (1967), 107172; (in Russian).Google Scholar
Arnold, V. I.. Some remarks on flows of line elements and frames. Sov. Math. Dokl. 2 (1961), 562564.Google Scholar
Arnold, V. I. and Givental, A. B.. Symplectic geometry. Dynamical Systems IV (Encyclopaedia of Mathematical Sciences, 4). Springer, Berlin, 1990.CrossRefGoogle Scholar
Bialy, M.. Rigidity for periodic magnetic fields. Ergod. Th. & Dynam. Sys. 20 (2000), 16191626.CrossRefGoogle Scholar
Bialy, M. and Polterovich, L.. Hopf type rigidity for Newton equations. Math. Res. Lett. 2 (1995), 695700.Google Scholar
Burago, D. and Ivanov, S.. Riemannian tori without conjugate points are flat. Geom. Funct. Anal. 4 (1994), 259269.Google Scholar
Dairbekov, N. S. and Paternain, G. P.. Entropy production in Gaussian thermostats. Commun. Math. Phys. 269 (2007), 533543.Google Scholar
Gallavotti, G.. New methods in nonequilibrium gases and fluids. Open Syst. Inf. Dyn. 6 (1999), 101136.Google Scholar
Gallavotti, G. and Ruelle, D.. SRB states and nonequilibrium statistical mechanics close to equilibrium. Commun. Math. Phys. 190 (1997), 279281.CrossRefGoogle Scholar
Hopf, E.. Closed surfaces without conjugate points. Proc. Nat. Acad. Sci. 34 (1948), 4751.CrossRefGoogle ScholarPubMed
Jane, D. and Paternain, G. P.. On the injectivity of the X-ray transform for Anosov thermostats. Discrete. Contin. Dyn. Syst. 24 (2009), 471487.Google Scholar
Knauf, A.. Closed orbits and converse KAM theory. Nonlinearity 3 (1990), 961973.Google Scholar
Kozlov, V. V.. Calculus of variations in the large and classical mechanics. Russian Math. Surveys 40 (2) (2011), 3771.CrossRefGoogle Scholar
Novikov, S. P.. Variational methods and periodic solutions of equations of Kirchhoff type. II. J. Funct. Anal. Appl. 15 (1981), 263274.CrossRefGoogle Scholar
Novikov, S. P.. Hamiltonian formalism and a multivalued analogue of Morse theory. Russian Math. Surveys 37 (5) (1982), 156.Google Scholar
Novikov, S. P. and Shmel’tser, I.. Periodic solutions of the Kirchhoff equations for the free motion of a rigid body in a liquid, and the extended Lyusternik–Schnirelmann–Morse theory. I. J. Funct. Anal. Appl. 15 (1981), 197207.CrossRefGoogle Scholar
Paternain, G. P.. Regularity of weak foliations for thermostats. Nonlinearity 20 (2007), 87104.Google Scholar
Paternain, G. P. and Paternain, M.. Anosov geodesic flows and twisted symplectic structures. International Congress on Dynamical Systems in Montevideo (a Tribute to Ricardo Mañé) (Research Notes in Mathematics, 362). Eds. Ledrappier, F., Lewowicz, J. and Newhouse, S.. Pitman, 1996, pp. 132145.Google Scholar
Ruelle, D.. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95 (1999), 393468.CrossRefGoogle Scholar